ﻻ يوجد ملخص باللغة العربية
Whole-brain surface extraction is an essential topic in medical imaging systems as it provides neurosurgeons with a broader view of surgical planning and abnormality detection. To solve the problem confronted in current deep learning skull stripping methods lacking prior shape information, we propose a new network architecture that incorporates knowledge of signed distance fields and introduce an additional Laplacian loss to ensure that the prediction results retain shape information. We validated our newly proposed method by conducting experiments on our brain magnetic resonance imaging dataset (111 patients). The evaluation results demonstrate that our approach achieves comparable dice scores and also reduces the Hausdorff distance and average symmetric surface distance, thus producing more stable and smooth brain isosurfaces.
Surface reconstruction from magnetic resonance (MR) imaging data is indispensable in medical image analysis and clinical research. A reliable and effective reconstruction tool should: be fast in prediction of accurate well localised and high resoluti
Dense 3D object reconstruction from a single image has recently witnessed remarkable advances, but supervising neural networks with ground-truth 3D shapes is impractical due to the laborious process of creating paired image-shape datasets. Recent eff
Partial voluming (PV) is arguably the last crucial unsolved problem in Bayesian segmentation of brain MRI with probabilistic atlases. PV occurs when voxels contain multiple tissue classes, giving rise to image intensities that may not be representati
Recent works on implicit neural representations have shown promising results for multi-view surface reconstruction. However, most approaches are limited to relatively simple geometries and usually require clean object masks for reconstructing complex
Multiple Sclerosis (MS) is an autoimmune disease that leads to lesions in the central nervous system. Magnetic resonance (MR) images provide sufficient imaging contrast to visualize and detect lesions, particularly those in the white matter. Quantita