ترغب بنشر مسار تعليمي؟ اضغط هنا

Bubbles and W-shaped solitons in Kerr media with fractional diffraction

283   0   0.0 ( 0 )
 نشر من قبل Jingzhen Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that, with the help of a Gaussian potential barrier, dark modes in the form of a local depression (bubbles) can be supported by the repulsive Kerr nonlinearity in combination with fractional dimension. Similarly, W-shaped modes are supported by a double potential barrier. Families of the modes are constructed in a numerical form, and also by means of the Thomas-Fermi and variational approximations. All these modes are stable, which is predicted by computation of eigenvalues for small perturbations and confirmed by direct numerical simulations.



قيم البحث

اقرأ أيضاً

We consider one- and two-dimensional (1D and 2D) optical or matter-wave media with a maximum of the local self-repulsion strength at the center, and a minimum at periphery. If the central area is broad enough, it supports ground states in the form of flat-floor textquotedblleft bubbles, and topological excitations, in the form of dark solitons in 1D and vortices with winding number $m$ in 2D. Unlike bright solitons, delocalized bubbles and dark modes were not previously considered in this setting. The ground and excited states are accurately approximated by the Thomas-Fermi expressions. The 1D and 2D bubbles, as well as vortices with $m=1$, are completely stable, while the dark solitons and vortices with $m=2$ have nontrivial stability boundaries in their existence areas. Unstable dark solitons are expelled to the periphery, while unstable double vortices split in rotating pairs of unitary ones. Displaced stable vortices precess around the central point.
We examine the evolution of a time-varying perturbation signal pumped into a mono-mode fiber in the anomalous dispersion regime. We analytically establish that the perturbation evolves into a conservative pattern of periodic pulses which structures a nd profiles share close similarity with the so-called soliton-crystal states recently observed in fiber media [see e.g. A. Haboucha et al., Phys. Rev. Atextbf{78}, 043806 (2008); D. Y. Tang et al., Phys. Rev. Lett. textbf{101}, 153904 (2008); F. Amrani et al., Opt. Express textbf{19}, 13134 (2011)]. We derive mathematically and generate numerically a crystal of solitons using time division multiplexing of identical pulses. We suggest that at very fast pumping rates, the pulse signals overlap and create an unstable signal that is modulated by the fiber nonlinearity to become a periodic lattice of pulse solitons which can be described by elliptic functions. We carry out a linear stability analysis of the soliton-crystal structure and establish that the correlation of centers of mass of interacting pulses broadens their internal-mode spectrum, some modes of which are mutually degenerate. While it has long been known that high-intensity periodic pulse trains in optical fibers are generated from the phenomenon of modulational instability of continuous waves, the present study provides evidence that they can also be generated via temporal multiplexing of an infinitely large number of equal-intensity single pulses to give rise to stable elliptic solitons.
We report the existence of vectorial dark dissipative solitons in optical cavities subject to a coherently injected beam. We assume that the resonator is operating in a normal dispersion regime far from any modulational instability. We show that the vectorial front locking mechanism allows for the stabilisation of dark dissipative structures. These structures differ by their temporal duration and their state of polarization. We characterize them by constructing their heteroclinic snaking bifurcation diagram showing evidence of multistability within a finite range of the control parameter.
Families of coupled solitons of $mathcal{PT}$-symmetric physical models with gain and loss in fractional dimension and in settings with and without cross-interactions modulation (CIM), are reported. Profiles, powers, stability areas, and propagation dynamics of the obtained $mathcal{PT}$-symmetric coupled solitons are investigated. By comparing the results of the models with and without CIM, we find that the stability area of the model with CIM is much broader than the one without CIM. Remarkably, oscillating $mathcal{PT}$-symmetric coupled solitons can also exist in the model of CIM with the same coefficients of the self- and cross-interactions modulations. In addition, the period of these oscillating coupled solitons can be controlled by the linear coupling coefficient.
108 - Boris A. Malomed 2021
The article produces a brief review of some recent results which predict stable propagation of solitons and solitary vortices in models based on the nonlinear Schroedinger equation including fractional one- or two-dimensional diffraction and cubic or cubic-quintic nonlinear terms, as well as linear potentials. The fractional diffraction is represented by fractional-order spatial derivatives of the Riesz type, defined in terms of the direct and inverse Fourier transform. In this form, it can be realized by spatial-domain light propagation in optical setups with a specially devised combination of mirrors, lenses, and phase masks. The results presented in the article were chiefly obtained in a numerical form. Some analytical findings are included too -- in particular, for fast moving solitons, and results produced by the variational approximation. Also briefly considered are dissipative solitons which are governed by the fractional complex Ginzburg-Landau equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا