ﻻ يوجد ملخص باللغة العربية
In this article, we study the Euclidean minimum spanning tree problem in an imprecise setup. The problem is known as the emph{Minimum Spanning Tree Problem with Neighborhoods} in the literature. We study the problem where the neighborhoods are represented as non-crossing line segments. Given a set ${cal S}$ of $n$ disjoint line segments in $I!!R^2$, the objective is to find a minimum spanning tree (MST) that contains exactly one end-point from each segment in $cal S$ and the cost of the MST is minimum among $2^n$ possible MSTs. We show that finding such an MST is NP-hard in general, and propose a $2alpha$-factor approximation algorithm for the same, where $alpha$ is the approximation factor of the best-known approximation algorithm to compute a minimum cost Steiner tree in an undirected graph with non-negative edge weights. As an implication of our reduction, we can show that the unrestricted version of the problem (i.e., one point must be chosen from each segment such that the cost of MST is as minimum as possible) is also NP-hard. We also propose a parameterized algorithm for the problem based on the separability parameter defined for segments.
In a geometric network G = (S, E), the graph distance between two vertices u, v in S is the length of the shortest path in G connecting u to v. The dilation of G is the maximum factor by which the graph distance of a pair of vertices differs from the
We study an algorithmic problem that is motivated by ink minimization for sparse set visualizations. Our input is a set of points in the plane which are either blue, red, or purple. Blue points belong exclusively to the blue set, red points belong ex
We present a novel self-stabilizing algorithm for minimum spanning tree (MST) construction. The space complexity of our solution is $O(log^2n)$ bits and it converges in $O(n^2)$ rounds. Thus, this algorithm improves the convergence time of all previo
In this paper, we address the minimum-area rectangular and square annulus problem, which asks a rectangular or square annulus of minimum area, either in a fixed orientation or over all orientations, that encloses a set $P$ of $n$ input points in the
We present time-space trade-offs for computing the Euclidean minimum spanning tree of a set $S$ of $n$ point-sites in the plane. More precisely, we assume that $S$ resides in a random-access memory that can only be read. The edges of the Euclidean mi