ترغب بنشر مسار تعليمي؟ اضغط هنا

Temporal characterization of electron dynamics in attosecond XUV and infrared laser fields

92   0   0.0 ( 0 )
 نشر من قبل Li Guo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a Wigner distribution-like function based on the strong field approximation theory to obtain the time-energy distributions and the ionization time distributions of electrons ionized by an XUV pulse alone and in the presence of an infrared (IR) pulse. In the case of a single XUV pulse, although the overall shape of the ionization time distribution resembles the XUV-envelope, its detail shows dependence on the emission direction of the electron and the carrier-envelope phase of the pulse, which mainly results from the low-energy interference structure. It is further found that the electron from the counter-rotating term plays an important role in the interference. In the case of the two-color pulse, both the time-energy distributions and the ionization time distributions change with varying IR field. Our analysis demonstrates that the IR field not only modifies the final electron kinetic energy but also changes the electrons emission time, which results from the change of the electric field induced by the IR pulse. Moreover, the ionization time distributions of the photoelectrons emitted from atoms with higher ionization energy are also given, which show less impact of the IR field on the electron dynamics.



قيم البحث

اقرأ أيضاً

Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond timescales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously only allowed the time-resolved investigation of two-photon , two-electron interactions. Here we demonstrate attosecond control over double and triple ionization of argon atoms involving the absorption of up to five XUV photons. In an XUV-pump XUV-probe measurement using a pair of attosecond pulse trains (APTs), the Ar$^{2+}$ ion yield exhibits a weak delay dependence, showing that its generation predominantly results from the sequential emission of two electrons by photoabsorption from the two APTs. In contrast, the Ar$^{3+}$ ion yield exhibits strong modulations as a function of the delay, which is a clear signature of the simultaneous absorption of at least two XUV photons. The experimental results are well reproduced by numerical calculations that provide detailed insights into the ionization dynamics. Our results open up new opportunities for the investigation and control of multi-electron dynamics and complex electron correlation mechanisms on extremely short timescales.
351 - Shiyang Zhong 2020
The photoionization of xenon atoms in the 70-100 eV range reveals several fascinating physical phenomena such as a giant resonance induced by the dynamic rearrangement of the electron cloud after photon absorption, an anomalous branching ratio betwee n intermediate Xe$^+$ states separated by the spin-orbit interaction and multiple Auger decay processes. These phenomena have been studied in the past, using in particular synchrotron radiation, but without access to real-time dynamics. Here, we study the dynamics of Xe 4d photoionization on its natural time scale combining attosecond interferometry and coincidence spectroscopy. A time-frequency analysis of the involved transitions allows us to identify two interfering ionization mechanisms: the broad giant dipole resonance with a fast decay time less than 50 as and a narrow resonance at threshold induced by spin-flip transitions, with much longer decay times of several hundred as. Our results provide new insight into the complex electron-spin dynamics of photo-induced phenomena.
We present experimental results showing the appearance of a near-continuum in the high-order harmonic generation (HHG) spectra of atomic and molecular species as the driving laser intensity of an infrared pulse increases. Detailed macroscopic simulat ions reveal that these near-continuum spectra are capable of producing IAPs in the far field if a proper spatial filter is applied. Further, our simulations show that the near-continuum spectra and the IAPs are a product of strong temporal and spatial reshaping (blue shift and defocusing) of the driving field. This offers a possibility of producing IAPs with a broad range of photon energy, including plateau harmonics, by mid-IR laser pulses even without carrier-envelope phase stabilization.
Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong electron interaction offers a fast and efficient lever to manipulate their properties with light, creating promising potential for next-generation electronics. However, the underlying dynamics is a fast and intricate interplay of polarization and screening effects, which is poorly understood. It is hidden below the femtosecond timescale of electronic thermalization, which follows the light-induced excitation. Here, we investigate the many-body electron dynamics in transition metals before thermalization sets in. We combine the sensitivity of intra-shell transitions to screening effects with attosecond time resolution to uncover the interplay of photo-absorption and screening. First-principles time-dependent calculations allow us to assign our experimental observations to ultrafast electronic localization on d-orbitals. The latter modifies the whole electronic structure as well as the collective dynamic response of the system on a timescale much faster than the light-field cycle. Our results demonstrate a possibility for steering the electronic properties of solids prior to electron thermalization, suggesting that the ultimate speed of electronic phase transitions is limited only by the duration of the controlling laser pulse. Furthermore, external control of the local electronic density serves as a fine tool for testing state-of-the art models of electron-electron interactions. We anticipate our study to facilitate further investigations of electronic phase transitions, laser-metal interactions and photo-absorption in correlated electron systems on its natural timescale.
Dielectric laser acceleration is a versatile scheme to accelerate and control electrons with the help of femtosecond laser pulses in nanophotonic structures. We demonstrate here the generation of a train of electron pulses with individual pulse durat ions as short as $270pm80$ attoseconds(FWHM), measured in an indirect fashion, based on two subsequent dielectric laser interaction regions connected by a free-space electron drift section, all on a single photonic chip. In the first interaction region (the modulator), an energy modulation is imprinted on the electron pulse. During free propagation, this energy modulation evolves into a charge density modulation, which we probe in the second interaction region (the analyzer). These results will lead to new ways of probing ultrafast dynamics in matter and are essential for future laser-based particle accelerators on a photonic chip.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا