ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Switching by Oxygen Adsorption in Metal-Organic Framework Systems

319   0   0.0 ( 0 )
 نشر من قبل Masaki Kato
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this letter, we address magnetization switching by oxygen adsorption in porous metal-organic framework systems. To this end, we construct a simple localized spin model combined with a Langmuir-type formula for oxygen adsorption and study its finite-temperature properties using Monte Carlo simulation. We successfully explain the main features of this phenomenon, such as the discontinuous changes in magnetic states, sensitivity of the magnetic transition temperatures to oxygen pressure, and absence of singularities in adsorbed oxygen. Based on this model, we also reproduce the observed magnetic transition temperatures for a typical value of oxygen adsorption energy.



قيم البحث

اقرأ أيضاً

Cooperative adsorption of gases by porous frameworks permits more efficient uptake and removal than does the more usual non-cooperative (Langmuir-type) adsorption. Cooperativity, signaled by a step-like isotherm, is usually attributed to a phase tran sition of the framework. However, the class of metal-organic frameworks mmen-M$_2$(dobpdc) exhibit cooperative adsorption of CO2 but show no evidence of a phase transition. Here we show how cooperativity emerges in these frameworks in the absence of a phase transition. We use a combination of quantum and statistical mechanics to show that cooperativity results from a sharp but finite increase, with pressure, of the mean length of chains of CO2 molecules that polymerize within the framework. Our study provides microscopic understanding of the emergent features of cooperative binding, including the position, slope and height of the isotherm step, and indicates how to optimize gas storage and separation in these materials.
134 - W. Wang , L.-Q. Yan , J.-Z. Cong 2013
Although the magnetoelectric effects - the mutual control of electric polarization by magnetic fields and magnetism by electric fields, have been intensively studied in a large number of inorganic compounds and heterostructures, they have been rarely observed in organic materials. Here we demonstrate magnetoelectric coupling in a metal-organic framework [(CH3)2NH2]Mn(HCOO)3 which exhibits an order-disorder type of ferroelectricity below 185 K. The magnetic susceptibility starts to deviate from the Curie-Weiss law at the paraelectric-ferroelectric transition temperature, suggesting an enhancement of short-range magnetic correlation in the ferroelectric state. Electron spin resonance study further confirms that the magnetic state indeed changes following the ferroelectric phase transition. Inversely, the ferroelectric polarization can be improved by applying high magnetic fields. We interpret the magnetoelectric coupling in the paramagnetic state in the metal-organic framework as a consequence of the magnetoelastic effect that modifies both the superexchange interaction and the hydrogen bonding.
157 - Yanpeng Yao , Nour Nijem , Jing Li 2012
Combining first-principles density functional theory simulations with IR and Raman experiments, we determine the frequency shift of vibrational modes of CO2 when physiadsorbed in the iso-structural metal organic framework materials Mg-MOF74 and Zn-MO F74. Surprisingly, we find that the resulting change in shift is rather different for these two systems and we elucidate possible reasons. We explicitly consider three factors responsible for the frequency shift through physiabsorption, namely (i) the change in the molecule length, (ii) the asymmetric distortion of the CO$_2$ molecule, and (iii) the direct influence of the metal center. The influence of each factor is evaluated separately through different geometry considerations, providing a fundamental understanding of the frequency shifts observed experimentally.
Achieving large-area uniform two-dimensional (2D) metal-organic frameworks (MOFs) and controlling their electronic properties on inert surfaces is a big step towards future applications in electronic devices. Here we successfully fabricated a 2D mono layer Cu-dicyanoanthracene (DCA) MOF with long-range order on an epitaxial graphene surface. Its structural and electronic properties are studied by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) complemented by density-functional theory (DFT) calculations. We demonstrate access to multiple molecular charge states in the 2D MOF using tip-induced local electric fields. We expect that a similar strategy could be applied to fabricate and characterize 2D MOFs with exotic, engineered electronic states.
Diamine-appended metal{organic frameworks (MOFs) of the form Mg2(dobpdc)(diamine)2 adsorb CO2 in a cooperative fashion, exhibiting an abrupt change in CO2 occupancy with pressure or temperature. This change is accompanied by hysteresis. While hystere sis is suggestive of a firstorder phase transition, we show that hysteretic temperature-occupancy curves associated with this material are qualitatively unlike the curves seen in the presence of a phase transition; they are instead consistent with CO2 chain polymerization, within one-dimensional channels in the MOF, in the absence of a phase transition. Our simulations of a microscopic model reproduce this dynamics, and point the way toward rational control, in and out of equilibrium, of cooperative adsorption in this industrially important class of materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا