ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of Time-variant and Time-invariant Assessment of Suicidality on Reddit using C-SSRS

57   0   0.0 ( 0 )
 نشر من قبل Manas Gaur
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Suicide is the 10th leading cause of death in the U.S (1999-2019). However, predicting when someone will attempt suicide has been nearly impossible. In the modern world, many individuals suffering from mental illness seek emotional support and advice on well-known and easily-accessible social media platforms such as Reddit. While prior artificial intelligence research has demonstrated the ability to extract valuable information from social media on suicidal thoughts and behaviors, these efforts have not considered both severity and temporality of risk. The insights made possible by access to such data have enormous clinical potential - most dramatically envisioned as a trigger to employ timely and targeted interventions (i.e., voluntary and involuntary psychiatric hospitalization) to save lives. In this work, we address this knowledge gap by developing deep learning algorithms to assess suicide risk in terms of severity and temporality from Reddit data based on the Columbia Suicide Severity Rating Scale (C-SSRS). In particular, we employ two deep learning approaches: time-variant and time-invariant modeling, for user-level suicide risk assessment, and evaluate their performance against a clinician-adjudicated gold standard Reddit corpus annotated based on the C-SSRS. Our results suggest that the time-variant approach outperforms the time-invariant method in the assessment of suicide-related ideations and supportive behaviors (AUC:0.78), while the time-invariant model performed better in predicting suicide-related behaviors and suicide attempt (AUC:0.64). The proposed approach can be integrated with clinical diagnostic interviews for improving suicide risk assessments.



قيم البحث

اقرأ أيضاً

197 - Nicholas Botzer , Shawn Gu , 2021
Moral outrage has become synonymous with social media in recent years. However, the preponderance of academic analysis on social media websites has focused on hate speech and misinformation. This paper focuses on analyzing moral judgements rendered o n social media by capturing the moral judgements that are passed in the subreddit /r/AmITheAsshole on Reddit. Using the labels associated with each judgement we train a classifier that can take a comment and determine whether it judges the user who made the original post to have positive or negative moral valence. Then, we use this classifier to investigate an assortment of website traits surrounding moral judgements in ten other subreddits, including where negative moral users like to post and their posting patterns. Our findings also indicate that posts that are judged in a positive manner will score higher.
The protocol for cryptocurrencies can be divided into three parts, namely consensus, wallet, and networking overlay. The aim of the consensus part is to bring trustless rational peer-to-peer nodes to an agreement to the current status of the blockcha in. The status must be updated through valid transactions. A proof-of-work (PoW) based consensus mechanism has been proven to be secure and robust owing to its simple rule and has served as a firm foundation for cryptocurrencies such as Bitcoin and Ethereum. Specialized mining devices have emerged, as rational miners aim to maximize profit, and caused two problems: i) the re-centralization of a mining market and ii) the huge energy spending in mining. In this paper, we aim to propose a new PoW called Error-Correction Codes PoW (ECCPoW) where the error-correction codes and their decoder can be utilized for PoW. In ECCPoW, puzzles can be intentionally generated to vary from block to block, leading to a time-variant puzzle generation mechanism. This mechanism is useful in repressing the emergence of the specialized mining devices. It can serve as a solution to the two problems of recentralization and energy spending.
The rise in online misinformation in recent years threatens democracies by distorting authentic public discourse and causing confusion, fear, and even, in extreme cases, violence. There is a need to understand the spread of false content through onli ne networks for developing interventions that disrupt misinformation before it achieves virality. Using a Deep Bidirectional Transformer for Language Understanding (BERT) and propagation graphs, this study classifies and visualizes the spread of misinformation on a social media network using publicly available Twitter data. The results confirm prior research around user clusters and the virality of false content while improving the precision of deep learning models for misinformation detection. The study further demonstrates the suitability of BERT for providing a scalable model for false information detection, which can contribute to the development of more timely and accurate interventions to slow the spread of misinformation in online environments.
A key challenge in mining social media data streams is to identify events which are actively discussed by a group of people in a specific local or global area. Such events are useful for early warning for accident, protest, election or breaking news. However, neither the list of events nor the resolution of both event time and space is fixed or known beforehand. In this work, we propose an online spatio-temporal event detection system using social media that is able to detect events at different time and space resolutions. First, to address the challenge related to the unknown spatial resolution of events, a quad-tree method is exploited in order to split the geographical space into multiscale regions based on the density of social media data. Then, a statistical unsupervised approach is performed that involves Poisson distribution and a smoothing method for highlighting regions with unexpected density of social posts. Further, event duration is precisely estimated by merging events happening in the same region at consecutive time intervals. A post processing stage is introduced to filter out events that are spam, fake or wrong. Finally, we incorporate simple semantics by using social media entities to assess the integrity, and accuracy of detected events. The proposed method is evaluated using different social media datasets: Twitter and Flickr for different cities: Melbourne, London, Paris and New York. To verify the effectiveness of the proposed method, we compare our results with two baseline algorithms based on fixed split of geographical space and clustering method. For performance evaluation, we manually compute recall and precision. We also propose a new quality measure named strength index, which automatically measures how accurate the reported event is.
Rapid damage assessment is one of the core tasks that response organizations perform at the onset of a disaster to understand the scale of damage to infrastructures such as roads, bridges, and buildings. This work analyzes the usefulness of social me dia imagery content to perform rapid damage assessment during a real-world disaster. An automatic image processing system, which was activated in collaboration with a volunteer response organization, processed ~280K images to understand the extent of damage caused by the disaster. The system achieved an accuracy of 76% computed based on the feedback received from the domain experts who analyzed ~29K system-processed images during the disaster. An extensive error analysis reveals several insights and challenges faced by the system, which are vital for the research community to advance this line of research.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا