ﻻ يوجد ملخص باللغة العربية
Three-dimensional topological insulator (3D TI) nanowires display various interesting magnetotransport properties that can be attributed to their spin-momentum-locked surface states such as quasiballistic transport and Aharonov-Bohm oscillations. Here, we focus on the transport properties of a 3D TI nanowire with a gated section that forms an electronic Fabry-Perot (FP) interferometer that can be tuned to act as a surface-state filter or energy barrier. By tuning the carrier density and length of the gated section of the wire, the interference pattern can be controlled and the nanowire can become fully transparent for certain topological surface-state input modes while completely filtering out others. We also consider the interplay of FP interference with an external magnetic field, with which Klein tunneling can be induced, and transverse asymmetry of the gated section, e.g., due to a top-gated structure, which displays an interesting analogy with Rashba nanowires. Due to its rich conductance phenomenology, we propose a 3D TI nanowire with gated section as an ideal setup for a detailed transport-based characterization of 3D TI nanowire surface states near the Dirac point, which could be useful towards realizing 3D TI nanowire-based topological superconductivity and Majorana bound states.
Resistance oscillations in electronic Fabry-Perot interferometers near fractional quantum Hall (FQH) filling factors 1/3, 2/3, 4/3 and 5/3 in the constrictions are compared to corresponding oscillations near integer quantum Hall (IQH) filling factors
We propose an intrinsic 3D Fabry-Perot type interferometer, coined higher-order interferometer, that utilizes the chiral hinge states of second-order topological insulators and cannot be equivalently mapped to 2D space because of higher-order topolog
Electrical field control of the carrier density of topological insulators (TI) has greatly expanded the possible practical use of these materials. However, the combination of low temperature local probe studies and a gate tunable TI device remains ch
The thermoelectric properties of the surface states in three-dimensional topological insulator nanowires are studied. The Seebeck coefficients $S_c$ and the dimensionless thermoelectrical figure of merit $ZT$ are obtained by using the tight-binding H
In this chapter we review our work on the theory of quantum transport in topological insulator nanowires. We discuss both normal state properties and superconducting proximity effects, including the effects of magnetic fields and disorder. Throughout