ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating observable structures due to a perturbed interstellar medium in front of astrospheric bow shocks in 3D MHD

97   0   0.0 ( 0 )
 نشر من قبل Lennart R. Baalmann
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. While the shapes of many observed bow shocks can be reproduced by simple astrosphere models, more elaborate approaches have recently been used to explain differing observable structures. Aims. By placing perturbations of an otherwise homogeneous interstellar medium in front of the astrospheric bow shock of the runaway blue supergiant $lambda$ Cephei, the observable structure of the model astrosphere is significantly altered, providing insight into the origin of perturbed bow shock images. Methods. Three-dimensional single-fluid magnetohydrodynamic (MHD) models of stationary astrospheres were subjected to various types of perturbations and simulated until stationarity was reached again. As examples, simple perturbations of the available MHD parameters (number density, bulk velocity, temperature, and magnetic field) as well as a more complex perturbation were chosen. Synthetic observations were generated by line-of-sight integration of the model data, producing H$alpha$, $70,mu$m dust emission, and bremsstrahlung maps of the perturbed astrospheres evolution. Results. The resulting shock structures and observational images differ strongly depending on the type of the injected perturbation and the viewing angles, forming arc-like protrusions or bifurcations of the bow shock structure, as well as rings, arcs, and irregular structures detached from the bow shock.



قيم البحث

اقرأ أيضاً

Expanding nebulae are produced by mass loss from stars, especially during late stages of evolution. Multi-dimensional simulation of these nebulae requires high resolution near the star and permits resolution that decreases with distance from the star , ideally with adaptive timesteps. We report the implementation and testing of static mesh-refinement in the radiation-magnetohydrodynamics code PION, and document its performance for 2D and 3D calculations. The bow shock produced by a hot, magnetized, slowly rotating star as it moves through the magnetized ISM is simulated in 3D, highlighting differences compared with 2D calculations. Latitude-dependent, time-varying magnetized winds are modelled and compared with simulations of ring nebulae around blue supergiants from the literature. A 3D simulation of the expansion of a fast wind from a Wolf-Rayet star into the slow wind from a previous red supergiant phase of evolution is presented, with results compared with results in the literature and analytic theory. Finally the wind-wind collision from a binary star system is modelled with 3D MHD, and the results compared with previous 2D hydrodynamic calculations. A python library is provided for reading and plotting simulation snapshots, and the generation of synthetic infrared emission maps using torus is also demonstrated. It is shown that state-of-the-art 3D MHD simulations of wind-driven nebulae can be performed using PION with reasonable computational resources. The source code and user documentation is made available for the community under a BSD3 licence.
Stellar bow shocks are observed in a variety of interstellar environments and are shaped by the conditions of gas in the interstellar medium (ISM). In situ measurements of turbulent density fluctuations near stellar bow shocks are only achievable wit h a few observational probes, including H$alpha$ emitting bow shocks and the Voyager Interstellar Mission (VIM). In this paper, we examine density variations around the Guitar Nebula, an H$alpha$ bow shock associated with PSR B2224$+$65, in tandem with density variations probed by VIM near the boundary of the solar wind and ISM. High-resolution Hubble Space Telescope observations of the Guitar Nebula taken between 1994 and 2006 trace density variations over scales from 100s to 1000s of au, while VIM density measurements made with the Voyager 1 Plasma Wave System constrain variations from 1000s of meters to 10s of au. The power spectrum of density fluctuations constrains the amplitude of the turbulence wavenumber spectrum near the Guitar Nebula to ${rm log}_{10}C_{rm n}^2 = -0.8pm0.2$ m$^{-20/3}$ and for the very local ISM probed by Voyager ${rm log}_{10}C_{rm n}^2 = -1.57pm0.02$ m$^{-20/3}$. Spectral amplitudes obtained from multi-epoch observations of four other H$alpha$ bow shocks also show significant enhancements in $C_{rm n}^2$ from values that are considered typical for the diffuse, warm ionized medium, suggesting that density fluctuations near these bow shocks may be amplified by shock interactions with the surrounding medium, or by selection effects that favor H$alpha$ emission from bow shocks embedded in denser media.
92 - M. Tafalla , Y.-N. Su , H. Shang 2016
$Aims.$ We study the relation between the jet and the outflow in the IRAS 04166+2706 protostar. This Taurus protostar drives a molecular jet that contains multiple emission peaks symmetrically located from the central source. The protostar also drive s a wide-angle outflow consisting of two conical shells. $Methods.$ We have used the Atacama Large Millimeter/submillimeter Array (ALMA) interferometer to observe two fields along the IRAS 04166+2706 jet. The fields were centered on a pair of emission peaks that correspond to the same ejection event, and were observed in CO(2-1), SiO(5-4), and SO(65-54). $ Results.$ Both ALMA fields present spatial distributions that are approximately elliptical and have their minor axes aligned with the jet direction. As the velocity increases, the emission in each field moves gradually across the elliptical region. This systematic pattern indicates that the emitting gas in each field lies in a disk-like structure that is perpendicular to the jet axis and is expanding away from the jet. A small degree of curvature in the first-moment maps indicates that the disks are slightly curved in the manner expected for bow shocks moving away from the IRAS source. A simple geometrical model confirms that this scenario fits the main emission features. $Conclusions.$ The emission peaks in the IRAS 04166+2706 jet likely represent internal bow shocks where material is being ejected laterally away from the jet axis. While the linear momentum of the ejected gas is dominated by the component in the jet direction, the sideways component is not negligible, and can potentially affect the distribution of gas in the surrounding outflow and core.
The magnetometer (MAG) on Voyager 1 (V1) has been sampling the interstellar magnetic field (ISMF) since August 2012. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancemen ts in magnetic field strength. Using a three-dimensional, data driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 astronomical unit, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density are compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.
Cyanogen (NCCN) is the simplest member of the dicyanopolyynes group, and has been proposed as a major source of the CN radical observed in cometary atmospheres. Although not detected through its rotational spectrum in the cold interstellar medium, th is very stable species is supposed to be very abundant. The chemistry of cyanogen in the cold interstellar medium can be investigated through its metastable isomer, CNCN (isocyanogen). Its formation may provide a clue on the widely abundant CN radical observed in cometary atmospheres. We performed an unbiased spectral survey of the L1544 proto-typical prestellar core, using the IRAM-30m and have analysed, for this paper, the nitrogen chemistry that leads to the formation of isocyanogen. We report on the first detection of CNCN, NCCNH+, C3N, CH3CN, C2H3CN, and H2CN in L1544. We built a detailed chemical network for NCCN/CNCN/HC2N2+ involving all the nitrogen bearing species detected (CN, HCN, HNC, C3N, CNCN, CH3CN, CH2CN, HCCNC, HC3N, HNC3, H2CN, C2H3CN, HCNH+, HC3NH+) and the upper limits on C4N, C2N. The main cyanogen production pathways considered in the network are the CN + HNC and N + C3N reactions. The comparison between the observations of the nitrogen bearing species and the predictions from the chemical modelling shows a very good agreement, taking into account the new chemical network. The expected cyanogen abundance is greater than the isocyanogen abundance by a factor of 100. Although cyanogen cannot be detected through its rotational spectrum, the chemical modelling predicts that it should be abundant in the gas phase and hence might be traced through the detection of isocyanogen. It is however expected to have a very low abundance on the grain surfaces compared to HCN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا