ترغب بنشر مسار تعليمي؟ اضغط هنا

An Analytical Density Profile of Dense Circumstellar Medium in Type II Supernovae

144   0   0.0 ( 0 )
 نشر من قبل Daichi Tsuna
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of Type II supernovae imply that a large fraction of its progenitors experience enhanced mass loss years to decades before core collapse, creating a dense circumstellar medium (CSM). Assuming that the CSM is produced by a single mass eruption event, we analytically model the density profile of the resulting CSM. We find that a double power-law profile, where the inner (outer) power-law index has a characteristic value of -1.5 (-10 to -12), gives a good fit to the CSM profile obtained using radiation hydrodynamical simulations. With our profile the CSM is well described by just two parameters, the transition radius $r_*$ and density at $r=r_*$ (alternatively $r_*$ and the total CSM mass). We encourage future studies to include this profile, if possible, when modelling emission from interaction-powered transients.



قيم البحث

اقرأ أيضاً

We present photometry and spectroscopy of SN2013fs and SN2013fr in the first 100 days post-explosion. Both objects showed transient, relatively narrow H$alpha$ emission lines characteristic of SNeIIn, but later resembled normal SNeII-P or SNeII-L, in dicative of fleeting interaction with circumstellar material (CSM). SN2013fs was discovered within 8hr of explosion. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SNIIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNeII-P and IIn. It requires dense CSM within 6.5$times$10$^{14}$~cm of the progenitor, from a phase of advanced pre-SN mass loss shortly before explosion. Spectropolarimetry of SN2013fs shows little continuum polarization, but noticeable line polarization during the plateau phase. SN2013fr morphed from a SNIIn at early times to a SNII-L. After the first epoch its narrow lines probably arose from host-galaxy emission, but the bright, narrow H$alpha$ emission at early times may be intrinsic. As for SN2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNeIIn and II-L. It is a low-velocity SNII-L, like SN2009kr but more luminous. SN2013fr also developed an IR excess at later times, due to warm CSM dust that require a more sustained phase of strong pre-SN mass loss.
142 - Niharika Sravan 2020
Type IIb supernovae (SNe IIb) present a unique opportunity for investigating the evolutionary channels and mechanisms governing the evolution of stripped-envelope SN progenitors due to a variety of observational constraints available. Comparison of t hese constraints with the full distribution of theoretical properties not only help ascertain the prevalence of observed properties in nature, but can also reveal currently unobserved populations. In this follow-up paper, we use the large grid of models presented in Sravan et al. 2019 to derive distributions of single and binary SNe IIb progenitor properties and compare them to constraints from three independent observational probes: multi-band SN light-curves, direct progenitor detections, and X-ray/radio observations. Consistent with previous work, we find that while current observations exclude single stars as SN IIb progenitors, SN IIb progenitors in binaries can account for them. We also find that the distributions indicate the existence of an unobserved dominant population of binary SNe IIb at low metallicity that arise due to mass transfer initiated on the Hertzsprung Gap. In particular, our models indicate the existence of a group of highly stripped (envelope mass ~0.1-0.2 M_sun) progenitors that are compact (<50 R_sun) and blue (T_eff <~ 10^5K) with ~10^4.5-10^5.5 L_sun and low density circumstellar mediums. As discussed in Sravan et al. 2019, this group is necessary to account for SN IIb fractions and likely exist regardless of metallicity. The detection of the unobserved populations indicated by our models would support weak stellar winds and inefficient mass transfer in SN IIb progenitors.
In classical P-Cygni profiles, theory predicts emission to peak at zero rest velocity. However, supernova spectra exhibit emission that is generally blue shifted. While this characteristic has been reported in many supernovae, it is rarely discussed in any detail. Here we present an analysis of H-alpha emission-peaks using a dataset of 95 type II supernovae, quantifying their strength and time evolution. Using a post-explosion time of 30d, we observe a systematic blueshift of H-alpha emission, with a mean value of -2000 kms-1. This offset is greatest at early times but vanishes as supernovae become nebular. Simulations of Dessart et al. (2013) match the observed behaviour, reproducing both its strength and evolution in time. Such blueshifts are a fundamental feature of supernova spectra as they are intimately tied to the density distribution of ejecta, which falls more rapidly than in stellar winds. This steeper density structure causes line emission/absorption to be much more confined; it also exacerbates the occultation of the receding part of the ejecta, biasing line emission to the blue for a distant observer. We conclude that blue-shifted emission-peak offsets of several thousand kms-1 are a generic property of observations, confirmed by models, of photospheric-phase type II supernovae.
A number of Type I (hydrogenless) superluminous supernova (SLSN) events have been discovered recently. However, their nature remains debatable. One of the most promising ideas is the shock-interaction mechanism, but only simplified semi-analytical mo dels have been applied so far. We simulate light curves for several Type I SLSN (SLSN-I) models enshrouded by dense, non-hydrogen circumstellar envelopes, using a multi-group radiation hydrodynamics code that predicts not only bolometric, but also multicolor light curves. We demonstrate that the bulk of SLSNe-I including those with relatively narrow light curves like SN 2010gx or broad ones like PTF09cnd can be explained by the interaction of the SN ejecta with he CS envelope, though the range of parameters for these models is rather wide. Moderate explosion energy ($sim (2 - 4)cdot 10^{51}$ ergs) is sufficient to explain both narrow and broad SLSN-I light curves, but ejected mass and envelope mass differ for those two cases. Only 5 to 10 $M_odot$ of non-hydrogen material is needed to reproduce the light curve of SN 2010gx, while the best model for PTF09cnd is very massive: it contains almost $ 50 M_odot $ in the CS envelope and only $ 5 M_odot $ in the ejecta. The CS envelope for each case extends from 10 $R_odot$ to $sim 10^5R_odot$ ($7cdot 10^{15} $ cm), which is about an order of magnitude larger than typical photospheric radii of standard SNe near the maximum light. We briefly discuss possible ways to form such unusual envelopes.
With the aim of improving our knowledge about the nature of the progenitors of low-luminosity Type II plateau supernovae (LL SNe IIP), we made radiation-hydrodynamical models of the well-sampled LL SNe IIP 2003Z, 2008bk and 2009md. For these three SN e we infer explosion energies of $0.16$-$0.18$ foe, radii at explosion of $1.8$-$3.5 times 10^{13}$ cm, and ejected masses of $10$-$11.3$Msun. The estimated progenitor mass on the main sequence is in the range $sim 13.2$-$15.1$Msun, for SN 2003Z and $sim 11.4$-$12.9$Msun, for SNe 2008bk and 2009md, in agreement with estimates from observations of the progenitors. These results together with those for other LL SNe IIP modelled in the same way, enable us also to conduct a comparative study on this SN sub-group. The results suggest that: a) the progenitors of faint SNe IIP are slightly less massive and have less energetic explosions than those of intermediate-luminosity SNe IIP, b) both faint and intermediate-luminosity SNe IIP originate from low-energy explosions of red (or yellow) supergiant stars of low-to-intermediate mass, c) some faint objects may also be explained as electron-capture SNe from massive super-asymptotic giant branch stars, and d) LL SNe IIP form the underluminous tail of the SNe IIP family, where the main parameter guiding the distribution seems to be the ratio of the total explosion energy to the ejected mass. Further hydrodynamical studies should be performed and compared to a more extended sample of LL SNe IIP before drawing any conclusion on the relevance of fall-back to this class of events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا