ﻻ يوجد ملخص باللغة العربية
Observations of Type II supernovae imply that a large fraction of its progenitors experience enhanced mass loss years to decades before core collapse, creating a dense circumstellar medium (CSM). Assuming that the CSM is produced by a single mass eruption event, we analytically model the density profile of the resulting CSM. We find that a double power-law profile, where the inner (outer) power-law index has a characteristic value of -1.5 (-10 to -12), gives a good fit to the CSM profile obtained using radiation hydrodynamical simulations. With our profile the CSM is well described by just two parameters, the transition radius $r_*$ and density at $r=r_*$ (alternatively $r_*$ and the total CSM mass). We encourage future studies to include this profile, if possible, when modelling emission from interaction-powered transients.
We present photometry and spectroscopy of SN2013fs and SN2013fr in the first 100 days post-explosion. Both objects showed transient, relatively narrow H$alpha$ emission lines characteristic of SNeIIn, but later resembled normal SNeII-P or SNeII-L, in
Type IIb supernovae (SNe IIb) present a unique opportunity for investigating the evolutionary channels and mechanisms governing the evolution of stripped-envelope SN progenitors due to a variety of observational constraints available. Comparison of t
In classical P-Cygni profiles, theory predicts emission to peak at zero rest velocity. However, supernova spectra exhibit emission that is generally blue shifted. While this characteristic has been reported in many supernovae, it is rarely discussed
A number of Type I (hydrogenless) superluminous supernova (SLSN) events have been discovered recently. However, their nature remains debatable. One of the most promising ideas is the shock-interaction mechanism, but only simplified semi-analytical mo
With the aim of improving our knowledge about the nature of the progenitors of low-luminosity Type II plateau supernovae (LL SNe IIP), we made radiation-hydrodynamical models of the well-sampled LL SNe IIP 2003Z, 2008bk and 2009md. For these three SN