ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantized Distributed Gradient Tracking Algorithm with Linear Convergence in Directed Networks

186   0   0.0 ( 0 )
 نشر من قبل Yongyang Xiong
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Communication efficiency is a major bottleneck in the applications of distributed networks. To address the problem, the problem of quantized distributed optimization has attracted a lot of attention. However, most of the existing quantized distributed optimization algorithms can only converge sublinearly. To achieve linear convergence, this paper proposes a novel quantized distributed gradient tracking algorithm (Q-DGT) to minimize a finite sum of local objective functions over directed networks. Moreover, we explicitly derive the update rule for the number of quantization levels, and prove that Q-DGT can converge linearly even when the exchanged variables are respectively one bit. Numerical results also confirm the efficiency of the proposed algorithm.



قيم البحث

اقرأ أيضاً

Communication compression techniques are of growing interests for solving the decentralized optimization problem under limited communication, where the global objective is to minimize the average of local cost functions over a multi-agent network usi ng only local computation and peer-to-peer communication. In this paper, we first propose a novel compressed gradient tracking algorithm (C-GT) that combines gradient tracking technique with communication compression. In particular, C-GT is compatible with a general class of compression operators that unifies both unbiased and biased compressors. We show that C-GT inherits the advantages of gradient tracking-based algorithms and achieves linear convergence rate for strongly convex and smooth objective functions. In the second part of this paper, we propose an error feedback based compressed gradient tracking algorithm (EF-C-GT) to further improve the algorithm efficiency for biased compression operators. Numerical examples complement the theoretical findings and demonstrate the efficiency and flexibility of the proposed algorithms.
371 - Zhuoqing Song , Lei Shi , Shi Pu 2021
In this paper, we propose two communication-efficient algorithms for decentralized optimization over a multi-agent network with general directed network topology. In the first part, we consider a novel communication-efficient gradient tracking based method, termed Compressed Push-Pull (CPP), which combines the Push-Pull method with communication compression. We show that CPP is applicable to a general class of unbiased compression operators and achieves linear convergence for strongly convex and smooth objective functions. In the second part, we propose a broadcast-like version of CPP (B-CPP), which also achieves linear convergence rate under the same conditions for the objective functions. B-CPP can be applied in an asynchronous broadcast setting and further reduce communication costs compared to CPP. Numerical experiments complement the theoretical analysis and confirm the effectiveness of the proposed methods.
In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where communication can be costly. We propose and analyze a class of nested distributed gradient methods with adaptive quantized communication ( NEAR-DGD+Q). We show the effect of performing multiple quantized communication steps on the rate of convergence and on the size of the neighborhood of convergence, and prove R-Linear convergence to the exact solution with increasing number of consensus steps and adaptive quantization. We test the performance of the method, as well as some practical variants, on quadratic functions, and show the effects of multiple quantized communication steps in terms of iterations/gradient evaluations, communication and cost.
In this work, we revisit a classical incremental implementation of the primal-descent dual-ascent gradient method used for the solution of equality constrained optimization problems. We provide a short proof that establishes the linear (exponential) convergence of the algorithm for smooth strongly-convex cost functions and study its relation to the non-incremental implementation. We also study the effect of the augmented Lagrangian penalty term on the performance of distributed optimization algorithms for the minimization of aggregate cost functions over multi-agent networks.
101 - Chuanye Gu , Zhiyou Wu , Jueyou Li 2018
We investigate a distributed optimization problem over a cooperative multi-agent time-varying network, where each agent has its own decision variables that should be set so as to minimize its individual objective subject to local constraints and glob al coupling constraints. Based on push-sum protocol and dual decomposition, we design a distributed regularized dual gradient algorithm to solve this problem, in which the algorithm is implemented in time-varying directed graphs only requiring the column stochasticity of communication matrices. By augmenting the corresponding Lagrangian function with a quadratic regularization term, we first obtain the bound of the Lagrangian multipliers which does not require constructing a compact set containing the dual optimal set when compared with most of primal-dual based methods. Then, we obtain that the convergence rate of the proposed method can achieve the order of $mathcal{O}(ln T/T)$ for strongly convex objective functions, where $T$ is the iterations. Moreover, the explicit bound of constraint violations is also given. Finally, numerical results on the network utility maximum problem are used to demonstrate the efficiency of the proposed algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا