ترغب بنشر مسار تعليمي؟ اضغط هنا

1st Place Solution to ICDAR 2021 RRC-ICTEXT End-to-end Text Spotting and Aesthetic Assessment on Integrated Circuit

67   0   0.0 ( 0 )
 نشر من قبل Qiyao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents our proposed methods to ICDAR 2021 Robust Reading Challenge - Integrated Circuit Text Spotting and Aesthetic Assessment (ICDAR RRC-ICTEXT 2021). For the text spotting task, we detect the characters on integrated circuit and classify them based on yolov5 detection model. We balance the lowercase and non-lowercase by using SynthText, generated data and data sampler. We adopt semi-supervised algorithm and distillation to furtherly improve the models accuracy. For the aesthetic assessment task, we add a classification branch of 3 classes to differentiate the aesthetic classes of each character. Finally, we make model deployment to accelerate inference speed and reduce memory consumption based on NVIDIA Tensorrt. Our methods achieve 59.1 mAP on task 3.1 with 31 FPS and 306M memory (rank 1), 78.7% F2 score on task 3.2 with 30 FPS and 306M memory (rank 1).



قيم البحث

اقرأ أيضاً

With hundreds of thousands of electronic chip components are being manufactured every day, chip manufacturers have seen an increasing demand in seeking a more efficient and effective way of inspecting the quality of printed texts on chip components. The major problem that deters this area of research is the lacking of realistic text on chips datasets to act as a strong foundation. Hence, a text on chips dataset, ICText is used as the main target for the proposed Robust Reading Challenge on Integrated Circuit Text Spotting and Aesthetic Assessment (RRC-ICText) 2021 to encourage the research on this problem. Throughout the entire competition, we have received a total of 233 submissions from 10 unique teams/individuals. Details of the competition and submission results are presented in this report.
In this technical report, we present our 1st place solution for the ICDAR 2021 competition on mathematical formula detection (MFD). The MFD task has three key challenges including a large scale span, large variation of the ratio between height and wi dth, and rich character set and mathematical expressions. Considering these challenges, we used Generalized Focal Loss (GFL), an anchor-free method, instead of the anchor-based method, and prove the Adaptive Training Sampling Strategy (ATSS) and proper Feature Pyramid Network (FPN) can well solve the important issue of scale variation. Meanwhile, we also found some tricks, e.g., Deformable Convolution Network (DCN), SyncBN, and Weighted Box Fusion (WBF), were effective in MFD task. Our proposed method ranked 1st in the final 15 teams.
We propose an end-to-end trainable network that can simultaneously detect and recognize text of arbitrary shape, making substantial progress on the open problem of reading scene text of irregular shape. We formulate arbitrary shape text detection as an instance segmentation problem; an attention model is then used to decode the textual content of each irregularly shaped text region without rectification. To extract useful irregularly shaped text instance features from image scale features, we propose a simple yet effective RoI masking step. Additionally, we show that predictions from an existing multi-step OCR engine can be leveraged as partially labeled training data, which leads to significant improvements in both the detection and recognition accuracy of our model. Our method surpasses the state-of-the-art for end-to-end recognition tasks on the ICDAR15 (straight) benchmark by 4.6%, and on the Total-Text (curved) benchmark by more than 16%.
Scene video text spotting (SVTS) is a very important research topic because of many real-life applications. However, only a little effort has put to spotting scene video text, in contrast to massive studies of scene text spotting in static images. Du e to various environmental interferences like motion blur, spotting scene video text becomes very challenging. To promote this research area, this competition introduces a new challenge dataset containing 129 video clips from 21 natural scenarios in full annotations. The competition containts three tasks, that is, video text detection (Task 1), video text tracking (Task 2) and end-to-end video text spotting (Task3). During the competition period (opened on 1st March, 2021 and closed on 11th April, 2021), a total of 24 teams participated in the three proposed tasks with 46 valid submissions, respectively. This paper includes dataset descriptions, task definitions, evaluation protocols and results summaries of the ICDAR 2021 on SVTS competition. Thanks to the healthy number of teams as well as submissions, we consider that the SVTS competition has been successfully held, drawing much attention from the community and promoting the field research and its development.
Many approaches have recently been proposed to detect irregular scene text and achieved promising results. However, their localization results may not well satisfy the following text recognition part mainly because of two reasons: 1) recognizing arbi trary shaped text is still a challenging task, and 2) prevalent non-trainable pipeline strategies between text detection and text recognition will lead to suboptimal performances. To handle this incompatibility problem, in this paper we propose an end-to-end trainable text spotting approach named Text Perceptron. Concretely, Text Perceptron first employs an efficient segmentation-based text detector that learns the latent text reading order and boundary information. Then a novel Shape Transform Module (abbr. STM) is designed to transform the detected feature regions into regular morphologies without extra parameters. It unites text detection and the following recognition part into a whole framework, and helps the whole network achieve global optimization. Experiments show that our method achieves competitive performance on two standard text benchmarks, i.e., ICDAR 2013 and ICDAR 2015, and also obviously outperforms existing methods on irregular text benchmarks SCUT-CTW1500 and Total-Text.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا