ﻻ يوجد ملخص باللغة العربية
We present a method for generating comparative summaries that highlights similarities and contradictions in input documents. The key challenge in creating such summaries is the lack of large parallel training data required for training typical summarization systems. To this end, we introduce a hybrid generation approach inspired by traditional concept-to-text systems. To enable accurate comparison between different sources, the model first learns to extract pertinent relations from input documents. The content planning component uses deterministic operators to aggregate these relations after identifying a subset for inclusion into a summary. The surface realization component lexicalizes this information using a text-infilling language model. By separately modeling content selection and realization, we can effectively train them with limited annotations. We implemented and tested the model in the domain of nutrition and health -- rife with inconsistencies. Compared to conventional methods, our framework leads to more faithful, relevant and aggregation-sensitive summarization -- while being equally fluent.
Developed so far, multi-document summarization has reached its bottleneck due to the lack of sufficient training data and diverse categories of documents. Text classification just makes up for these deficiencies. In this paper, we propose a novel sum
To assess the effectiveness of any medical intervention, researchers must conduct a time-intensive and highly manual literature review. NLP systems can help to automate or assist in parts of this expensive process. In support of this goal, we release
The progress in Query-focused Multi-Document Summarization (QMDS) has been limited by the lack of sufficient largescale high-quality training datasets. We present two QMDS training datasets, which we construct using two data augmentation methods: (1)
Recent researches have demonstrated that BERT shows potential in a wide range of natural language processing tasks. It is adopted as an encoder for many state-of-the-art automatic summarizing systems, which achieve excellent performance. However, so
While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS