ﻻ يوجد ملخص باللغة العربية
Notions of circuit complexity and cost play a key role in quantum computing and simulation where they capture the (weighted) minimal number of gates that is required to implement a unitary. Similar notions also become increasingly prominent in high energy physics in the study of holography. While notions of entanglement have in general little implications for the quantum circuit complexity and the cost of a unitary, in this note, we discuss a simple such relationship when both the entanglement of a state and the cost of a unitary take small values, building on ideas on how values of entangling power of quantum gates add up. This bound implies that if entanglement entropies grow linearly in time, so does the cost. The implications are two-fold: It provides insights into complexity growth for short times. In the context of quantum simulation, it allows to compare digital and analog quantum simulators. The main technical contribution is a continuous-variable small incremental entangling bound.
We use Nielsens geometric approach to quantify the circuit complexity in a one-dimensional Kitaev chain across a topological phase transition. We find that the circuit complexities of both the ground states and non-equilibrium steady states of the Ki
Quantifying quantum states complexity is a key problem in various subfields of science, from quantum computing to black-hole physics. We prove a prominent conjecture by Brown and Susskind about how random quantum circuits complexity increases. Consid
The variational quantum eigensolver (VQE) is one of the most promising algorithms to find eigenvalues and eigenvectors of a given Hamiltonian on noisy intermediate-scale quantum (NISQ) devices. A particular application is to obtain ground or excited
The capacity of a quantum gate to produce entangled states on a bipartite system is quantified in terms of the entangling power. This quantity is defined as the average of the linear entropy of entanglement of the states produced after applying a qua
We derive a bound on the ability of a linear optical network to estimate a linear combination of independent phase shifts by using an arbitrary non-classical but unentangled input state, thereby elucidating the quantum resources required to obtain th