ترغب بنشر مسار تعليمي؟ اضغط هنا

The lens SW05 J143454.4+522850: a fossil group at redshift 0.6?

116   0   0.0 ( 0 )
 نشر من قبل Philipp Denzel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fossil groups are considered the end product of natural galaxy group evolution in which group members sink towards the centre of the gravitational potential due to dynamical friction, merging into a single, massive, and X-ray bright elliptical. Since gravitational lensing depends on the mass of a foreground object, its mass concentration, and distance to the observer, we can expect lensing effects of such fossil groups to be particularly strong. This paper explores the exceptional system $mathrm{J}143454.4+522850$. We combine gravitational lensing with stellar population-synthesis to separate the total mass of the lens into stars and dark matter. The enclosed mass profiles are contrasted with state-of-the-art galaxy formation simulations, to conclude that SW05 is likely a fossil group with a high stellar to dark matter mass fraction $0.027pm0.003$ with respect to expectations from abundance matching $0.012pm0.004$, indicative of a more efficient conversion of gas into stars in fossil groups.



قيم البحث

اقرأ أيضاً

The Cheshire Cat is a relatively poor group of galaxies dominated by two luminous elliptical galaxies surrounded by at least four arcs from gravitationally lensed background galaxies that give the system a humorous appearance. Our combined optical/X- ray study of this system reveals that it is experiencing a line of sight merger between two groups with a roughly equal mass ratio with a relative velocity of ~1350 km/s. One group was most likely a low-mass fossil group, while the other group would have almost fit the classical definition of a fossil group. The collision manifests itself in a bimodal galaxy velocity distribution, an elevated central X-ray temperature and luminosity indicative of a shock, and gravitational arc centers that do not coincide with either large elliptical galaxy. One of the luminous elliptical galaxies has a double nucleus embedded off-center in the stellar halo. The luminous ellipticals should merge in less than a Gyr, after which observers will see a massive 1.2-1.5 x 10^14 solar mass fossil group with an M_r = -24.0 brightest group galaxy at its center. Thus, the Cheshire Cat offers us the first opportunity to study a fossil group progenitor. We discuss the limitations of the classical definition of a fossil group in terms of magnitude gaps between the member galaxies. We also suggest that if the merging of fossil (or near-fossil) groups is a common avenue for creating present-day fossil groups, the time lag between the final galactic merging of the system and the onset of cooling in the shock-heated core could account for the observed lack of well-developed cool cores in some fossil groups.
We want to study how the velocity segregation and the radial profile of the velocity dispersion depend on the prominence of the brightest cluster galaxies (BCGs). We divide a sample of 102 clusters and groups of galaxies into four bins of magnitude g ap between the two brightest cluster members. We then compute the velocity segregation in bins of absolute and relative magnitudes. Moreover, for each bin of magnitude gap we compute the radial profile of the velocity dispersion. When using absolute magnitudes, the segregation in velocity is limited to the two brightest bins and no significant difference is found for different magnitude gaps. However, when we use relative magnitudes, a trend appears in the brightest bin: the larger the magnitude gap, the larger the velocity segregation. We also show that this trend is mainly due to the presence, in the brightest bin, of satellite galaxies in systems with small magnitude gaps: in fact, if we study separately central galaxies and satellites, this trend is mitigated and central galaxies are more segregated than satellites for any magnitude gap. A similar result is found in the radial velocity dispersion profiles: a trend is visible in central regions (where the BCGs dominate) but, if we analyse the profile using satellites alone, the trend disappears. In the latter case, the shape of the velocity dispersion profile in the centre of systems with different magnitude gaps show three types of behaviours: systems with the smallest magnitude gaps have an almost flat profile from the centre to the external regions; systems with the largest magnitude gaps show a monothonical growth from the low values of the central part to the flat ones in the external regions; finally, systems with $1.0 < Delta m_{12} le 1.5$ show a profile that peaks in the centres and then decreases towards the external regions. We suggest that two mechanisms could be respons....
We have analyzed the Chandra archival data of NGC 1132, a well-known fossil group, i.e. a system expected to be old and relaxed long after the giant elliptical galaxy assembly. Instead, the Chandra data reveal that the hot gas morphology is disturbed and asymmetrical, with a cold front following a possible bow shock. We discuss possible origins of the disturbed hot halo, including sloshing by a nearby object, merger, ram pressure by external hotter gas and nuclear outburst. We consider that the first two mechanisms are likely explanations for the disturbed hot halo, with a slight preference for a minor merger with a low impact parameter because of the match with simulations and previous optical observations. In this case, NGC 1132 may be a rare example of unusual late mergers seen in recent simulations. Regardless of the origin of the disturbed hot halo, the paradigm of the fossil system needs to be reconsidered.
Groups are the most common association of galaxies in the Universe, found in different configuration states such as loose, compact and fossil groups. We have studied the galaxy group MKW 4s, dominated by the giant early-type galaxy NGC 4104 at z=0.02 82. Our aim was to understand the evolutionary stage of this group and to place it within the framework of the standard LambdaCDM cosmological scenario. We have obtained deep optical data with CFHT/Megacam (g and r bands) and we have applied both the galfit 2D image fitting program and the IRAF/ellipse 1D radial method to model the brightest group galaxy (BGG) and its extended stellar envelope. We have also analysed publicly available XMM-Newton and Chandra X-ray data. From N-body simulations of dry-mergers with different mass ratios of the infalling galaxy, we could constrain the dynamical stage of this system. Our results show a stellar shell system feature in NGC 4104 and an extended envelope that was reproduced by our numerical simulations of a collision with a satellite galaxy about 4--6 Gyr ago. The initial pair of galaxies had a mass ratio of at least 1:3. Taking into account the stellar envelope contribution to the total r band magnitude and the X-ray luminosity, MKW 4s falls into the category of a fossil group. Our results show that we are witnessing a rare case of a shell elliptical galaxy in a forming fossil group.
56 - M.P. Ulmer , C. Adami , G. Covone 2005
This is a report of Chandra, XMM-Newton, HST and ARC observations of an extended X-ray source at z = 0.59. The apparent member galaxies range from spiral to elliptical and are all relatively red (i-Ks about 3). We interpret this object to be a fossil group based on the difference between the brightness of the first and second brightest cluster members in the i-band, and because the rest-frame bolometric X-ray luminosity is about 9.2x10^43 h70^-2 erg s^-1. This makes Cl 1205+44 the highest redshift fossil group yet reported. The system also contains a central double-lobed radio galaxy which appears to be growing via the accretion of smaller galaxies. We discuss the formation and evolution of fossil groups in light of the high redshift of Cl 1205+44.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا