ﻻ يوجد ملخص باللغة العربية
Background: Creeping bentgrass (Agrostis soionifera) is a perennial grass of Gramineae, belonging to cold season turfgrass, but has shallow adventitious roots, poor disease-resistance. Little is known about the ISR mechanism of turfgrass and the signal transduction involved in disease-resistance induction, especially the function of a large number of disease-resistance related proteins are urgent to be explored. Results: In this work, the protein sequences of creeping bentgrass were measured and annotated by a functional prediction model based on convolutional neural network. Creeping bentgrass seedlings were grown with BDO treatment, and the ISR response was induced by infecting Rhizoctonia solani. We preformed the transcriptome analysis by Illumina Sequencing and high-quality unigenes were obtained. A minority of assembled unigenes were functionally annotated according to the database alignment while a large part of the obtained amino acid sequences was left non-annotated. To treat the non-annotated sequences, a prediction model was established by training the data set from GO families in three domains to acquire good performance, especially the higher false positive control rate. With such model, we analyzed the non-annotated protein sequences of creeping bentgrass transcriptome, and annotated the disease-resistance response and signal transduction related proteins. Conclusions: The results provide good candidates of the proteins with certain functions. With the results in this work, the waste of transcriptome sequencing data of creeping bentgrass can be avoided, and research time and labor for the analysis of ISR characteristics of creeping bentgrass will be saved in further research. It also provides reference for the sequence analysis of turfgrass disease-resistance research.
BACKGROUND: One of the most evident achievements of bioinformatics is the development of methods that transfer biological knowledge from characterised proteins to uncharacterised sequences. This mode of protein function assignment is mostly based on
Identifying novel functional protein structures is at the heart of molecular engineering and molecular biology, requiring an often computationally exhaustive search. We introduce the use of a Deep Convolutional Generative Adversarial Network (DCGAN)
Motivation Protein fold recognition is an important problem in structural bioinformatics. Almost all traditional fold recognition methods use sequence (homology) comparison to indirectly predict the fold of a tar get protein based on the fold of a
One key task in virtual screening is to accurately predict the binding affinity ($triangle$$G$) of protein-ligand complexes. Recently, deep learning (DL) has significantly increased the predicting accuracy of scoring functions due to the extraordinar
Predicting DNA-protein binding is an important and classic problem in bioinformatics. Convolutional neural networks have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. However, none of the studies has u