ﻻ يوجد ملخص باللغة العربية
We present a new application direction named Pareidolia Face Reenactment, which is defined as animating a static illusory face to move in tandem with a human face in the video. For the large differences between pareidolia face reenactment and traditional human face reenactment, two main challenges are introduced, i.e., shape variance and texture variance. In this work, we propose a novel Parametric Unsupervised Reenactment Algorithm to tackle these two challenges. Specifically, we propose to decompose the reenactment into three catenate processes: shape modeling, motion transfer and texture synthesis. With the decomposition, we introduce three crucial components, i.e., Parametric Shape Modeling, Expansionary Motion Transfer and Unsupervised Texture Synthesizer, to overcome the problems brought by the remarkably variances on pareidolia faces. Extensive experiments show the superior performance of our method both qualitatively and quantitatively. Code, model and data are available on our project page.
We propose an image-based, facial reenactment system that replaces the face of an actor in an existing target video with the face of a user from a source video, while preserving the original target performance. Our system is fully automatic and does
Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace,
Audio-guided face reenactment aims at generating photorealistic faces using audio information while maintaining the same facial movement as when speaking to a real person. However, existing methods can not generate vivid face images or only reenact l
We present a method to edit a target portrait footage by taking a sequence of audio as input to synthesize a photo-realistic video. This method is unique because it is highly dynamic. It does not assume a person-specific rendering network yet capable
We present a deep learning-based framework for portrait reenactment from a single picture of a target (one-shot) and a video of a driving subject. Existing facial reenactment methods suffer from identity mismatch and produce inconsistent identities w