ﻻ يوجد ملخص باللغة العربية
Compressed sensing is a paradigm within signal processing that provides the means for recovering structured signals from linear measurements in a highly efficient manner. Originally devised for the recovery of sparse signals, it has become clear that a similar methodology would also carry over to a wealth of other classes of structured signals. In this work, we provide an overview over the theory of compressed sensing for a particularly rich family of such signals, namely those of hierarchically structured signals. Examples of such signals are constituted by blocked vectors, with only few non-vanishing sparse blocks. We present recovery algorithms based on efficient hierarchical hard-thresholding. The algorithms are guaranteed to stable and robustly converge to the correct solution provide the measurement map acts isometrically restricted to the signal class. We then provide a series of results establishing that the required condition for large classes of measurement ensembles. Building upon this machinery, we sketch practical applications of this framework in machine-type and quantum communication.
This paper analyzes the impact of non-Gaussian multipath component (MPC) amplitude distributions on the performance of Compressed Sensing (CS) channel estimators for OFDM systems. The number of dominant MPCs that any CS algorithm needs to estimate in
Motivated by applications in unsourced random access, this paper develops a novel scheme for the problem of compressed sensing of binary signals. In this problem, the goal is to design a sensing matrix $A$ and a recovery algorithm, such that the spar
Xampling generalizes compressed sensing (CS) to reduced-rate sampling of analog signals. A unified framework is introduced for low rate sampling and processing of signals lying in a union of subspaces. Xampling consists of two main blocks: Analog com
Compressed sensing (CS) shows that a signal having a sparse or compressible representation can be recovered from a small set of linear measurements. In classical CS theory, the sampling matrix and representation matrix are assumed to be known exactly
A new method presented for design of incoherent dictionaries.