All-optical control dynamics of magnetization in sub-10 nm metallic thin films are investigated, as these films with quantum confinement undergo unique interactions with femtosecond laser pulses. Our theoretical derivations based on the free electron model show that the density of states at Fermi level (DOS_F) and electron-phonon coupling coefficients (G_ep) in ultrathin metals have very high sensitivity to film thickness within a few Angstroms. As DOS_F and G_ep depend on thickness, we show that completely different magnetization dynamics characteristics emerge compared with bulk metals. Our model suggests highly-efficient energy transfer from fs laser photons to spin waves due to minimal energy absorption by phonon. This sensitivity to thickness and efficient energy transfer offers an opportunity to obtain ultrafast on-chip magnetization dynamics.