ﻻ يوجد ملخص باللغة العربية
Eddy current testing (ECT) is an effective technique in the evaluation of the depth of metal surface defects. However, in practice, the evaluation primarily relies on the experience of an operator and is often carried out by manual inspection. In this paper, we address the challenges of automatic depth evaluation of metal surface defects by virtual of state-of-the-art deep learning (DL) techniques. The main contributions are three-fold. Firstly, a highly-integrated portable ECT device is developed, which takes advantage of an advanced field programmable gate array (Zynq-7020 system on chip) and provides fast data acquisition and in-phase/quadrature demodulation. Secondly, a dataset, termed as MDDECT, is constructed using the ECT device by human operators and made openly available. It contains 48,000 scans from 18 defects of different depths and lift-offs. Thirdly, the depth evaluation problem is formulated as a time series classification problem, and various state-of-the-art 1-d residual convolutional neural networks are trained and evaluated on the MDDECT dataset. A 38-layer 1-d ResNeXt achieves an accuracy of 93.58% in discriminating the surface defects in a stainless steel sheet. The depths of the defects vary from 0.3 mm to 2.0 mm in a resolution of 0.1 mm. In addition, results show that the trained ResNeXt1D-38 model is immune to lift-off signals.
During the image acquisition process, noise is usually added to the data mainly due to physical limitations of the acquisition sensor, and also regarding imprecisions during the data transmission and manipulation. In that sense, the resultant image n
We present cortical surface parcellation using spherical deep convolutional neural networks. Traditional multi-atlas cortical surface parcellation requires inter-subject surface registration using geometric features with high processing time on a sin
Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intens
Blanking processes belong to the most widely used manufacturing techniques due to their economic efficiency. Their economic viability depends to a large extent on the resulting product quality and the associated customer satisfaction as well as on po
Convolutional Neural Networks (CNN) have redefined the state-of-the-art in many real-world applications, such as facial recognition, image classification, human pose estimation, and semantic segmentation. Despite their success, CNNs are vulnerable to