ﻻ يوجد ملخص باللغة العربية
As the ground objects become increasingly complex, the classification results obtained by single source remote sensing data can hardly meet the application requirements. In order to tackle this limitation, we propose a simple yet effective attention fusion model based on Disentangled Non-local (DNL) network for hyperspectral and LiDAR data joint classification task. In this model, according to the spectral and spatial characteristics of HSI and LiDAR, a multiscale module and a convolutional neural network (CNN) are used to capture the spectral and spatial characteristics respectively. In addition, the extracted HSI and LiDAR features are fused through some operations to obtain the feature information more in line with the real situation. Finally, the above three data are fed into different branches of the DNL module, respectively. Extensive experiments on Houston dataset show that the proposed network is superior and more effective compared to several of the most advanced baselines in HSI and LiDAR joint classification missions.
In this paper, we propose an efficient and effective framework to fuse hyperspectral and Light Detection And Ranging (LiDAR) data using two coupled convolutional neural networks (CNNs). One CNN is designed to learn spectral-spatial features from hype
Deep learning methods have shown considerable potential for hyperspectral image (HSI) classification, which can achieve high accuracy compared with traditional methods. However, they often need a large number of training samples and have a lot of par
An efficient linear self-attention fusion model is proposed in this paper for the task of hyperspectral image (HSI) and LiDAR data joint classification. The proposed method is comprised of a feature extraction module, an attention module, and a fusio
Sparse model is widely used in hyperspectral image classification.However, different of sparsity and regularization parameters has great influence on the classification results.In this paper, a novel adaptive sparse deep network based on deep archite
Non-local low-rank tensor approximation has been developed as a state-of-the-art method for hyperspectral image (HSI) restoration, which includes the tasks of denoising, compressed HSI reconstruction and inpainting. Unfortunately, while its restorati