ﻻ يوجد ملخص باللغة العربية
Convolutional neural networks (CNN) have made great progress for synthetic aperture radar (SAR) images change detection. However, sampling locations of traditional convolutional kernels are fixed and cannot be changed according to the actual structure of the SAR images. Besides, objects may appear with different sizes in natural scenes, which requires the network to have stronger multi-scale representation ability. In this paper, a novel underline{D}eformable underline{R}esidual Convolutional Neural underline{N}etwork (DRNet) is designed for SAR images change detection. First, the proposed DRNet introduces the deformable convolutional sampling locations, and the shape of convolutional kernel can be adaptively adjusted according to the actual structure of ground objects. To create the deformable sampling locations, 2-D offsets are calculated for each pixel according to the spatial information of the input images. Then the sampling location of pixels can adaptively reflect the spatial structure of the input images. Moreover, we proposed a novel pooling module replacing the vanilla pooling to utilize multi-scale information effectively, by constructing hierarchical residual-like connections within one pooling layer, which improve the multi-scale representation ability at a granular level. Experimental results on three real SAR datasets demonstrate the effectiveness of the proposed DRNet.
Classification of polarimetric synthetic aperture radar (PolSAR) images is an active research area with a major role in environmental applications. The traditional Machine Learning (ML) methods proposed in this domain generally focus on utilizing hig
In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle
This paper introduces new attention-based convolutional neural networks for selecting bands from hyperspectral images. The proposed approach re-uses convolutional activations at different depths, identifying the most informative regions of the spectr
Despite the advantages of all-weather and all-day high-resolution imaging, synthetic aperture radar (SAR) images are much less viewed and used by general people because human vision is not adapted to microwave scattering phenomenon. However, expert i
Existing region-based object detectors are limited to regions with fixed box geometry to represent objects, even if those are highly non-rectangular. In this paper we introduce DP-FCN, a deep model for object detection which explicitly adapts to shap