ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-hierarchical Convolutional Network for Efficient Remote Photoplethysmograph Signal and Heart Rate Estimation from Face Video Clips

143   0   0.0 ( 0 )
 نشر من قبل Bin Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Heart beat rhythm and heart rate (HR) are important physiological parameters of the human body. This study presents an efficient multi-hierarchical spatio-temporal convolutional network that can quickly estimate remote physiological (rPPG) signal and HR from face video clips. First, the facial color distribution characteristics are extracted using a low-level face feature Generation (LFFG) module. Then, the three-dimensional (3D) spatio-temporal stack convolution module (STSC) and multi-hierarchical feature fusion module (MHFF) are used to strengthen the spatio-temporal correlation of multi-channel features. In the MHFF, sparse optical flow is used to capture the tiny motion information of faces between frames and generate a self-adaptive region of interest (ROI) skin mask. Finally, the signal prediction module (SP) is used to extract the estimated rPPG signal. The experimental results on the three datasets show that the proposed network outperforms the state-of-the-art methods.



قيم البحث

اقرأ أيضاً

Extracting the instantaneous heart rate (iHR) from face videos has been well studied in recent years. It is well known that changes in skin color due to blood flow can be captured using conventional cameras. One of the main limitations of methods tha t rely on this principle is the need of an illumination source. Moreover, they have to be able to operate under different light conditions. One way to avoid these constraints is using infrared cameras, allowing the monitoring of iHR under low light conditions. In this work, we present a simple, principled signal extraction method that recovers the iHR from infrared face videos. We tested the procedure on 7 participants, for whom we recorded an electrocardiogram simultaneously with their infrared face video. We checked that the recovered signal matched the ground truth iHR, showing that infrared is a promising alternative to conventional video imaging for heart rate monitoring, especially in low light conditions. Code is available at https://github.com/natalialmg/IR_iHR
A non-invasive yet inexpensive method for heart rate (HR) monitoring is of great importance in many real-world applications including healthcare, psychology understanding, affective computing and biometrics. Face videos are currently utilized for suc h HR monitoring, but unfortunately this can lead to errors due to the noise introduced by facial expressions, out-of-plane movements, camera parameters (like focus change) and environmental factors. We alleviate these issues by proposing a novel face video based HR monitoring method MOMBAT, that is, MOnitoring using Modeling and BAyesian Tracking. We utilize out-of-plane face movements to define a novel quality estimation mechanism. Subsequently, we introduce a Fourier basis based modeling to reconstruct the cardiovascular pulse signal at the locations containing the poor quality, that is, the locations affected by out-of-plane face movements. Furthermore, we design a Bayesian decision theory based HR tracking mechanism to rectify the spurious HR estimates. Experimental results reveal that our proposed method, MOMBAT outperforms state-of-the-art HR monitoring methods and performs HR monitoring with an average absolute error of 1.329 beats per minute and the Pearson correlation between estimated and actual heart rate is 0.9746. Moreover, it demonstrates that HR monitoring is significantly
While convolutional neural networks (CNNs) have significantly boosted the performance of face related algorithms, maintaining accuracy and efficiency simultaneously in practical use remains challenging. Recent study shows that using a cascade of hour glass modules which consist of a number of bottom-up and top-down convolutional layers can extract facial structural information for face alignment to improve accuracy. However, previous studies have shown that features produced by shallow convolutional layers are highly correspond to edges. These features could be directly used to provide the structural information without addition cost. Motivated by this intuition, we propose an efficient multitask face alignment, face tracking and head pose estimation network (ATPN). Specifically, we introduce a shortcut connection between shallow-layer features and deep-layer features to provide the structural information for face alignment and apply the CoordConv to the last few layers to provide coordinate information. The predicted facial landmarks enable us to generate a cheap heatmap which contains both geometric and appearance information for head pose estimation and it also provides attention clues for face tracking. Moreover, the face tracking task saves us the face detection procedure for each frame, which is significant to boost performance for video-based tasks. The proposed framework is evaluated on four benchmark datasets, WFLW, 300VW, WIDER Face and 300W-LP. The experimental results show that the ATPN achieves improved performance compared to previous state-of-the-art methods while having less number of parameters and FLOPS.
Photoplethysmogram (PPG) is increasingly used to provide monitoring of the cardiovascular system under ambulatory conditions. Wearable devices like smartwatches use PPG to allow long term unobtrusive monitoring of heart rate in free living conditions . PPG based heart rate measurement is unfortunately highly susceptible to motion artifacts, particularly when measured from the wrist. Traditional machine learning and deep learning approaches rely on tri-axial accelerometer data along with PPG to perform heart rate estimation. The conventional learning based approaches have not addressed the need for device-specific modeling due to differences in hardware design among PPG devices. In this paper, we propose a novel end to end deep learning model to perform heart rate estimation using 8 second length input PPG signal. We evaluate the proposed model on the IEEE SPC 2015 dataset, achieving a mean absolute error of 3.36+-4.1BPM for HR estimation on 12 subjects without requiring patient specific training. We also studied the feasibility of applying transfer learning along with sparse retraining from a comprehensive in house PPG dataset for heart rate estimation across PPG devices with different hardware design.
68 - Ze Yang , Haofei Wang , Feng Lu 2021
Remote photoplethysmography (rPPG) monitors heart rate without requiring physical contact, which allows for a wide variety of applications. Deep learning-based rPPG have demonstrated superior performance over the traditional approaches in controlled context. However, the lighting situation in indoor space is typically complex, with uneven light distribution and frequent variations in illumination. It lacks a fair comparison of different methods under different illuminations using the same dataset. In this paper, we present a public dataset, namely the BH-rPPG dataset, which contains data from twelve subjects under three illuminations: low, medium, and high illumination. We also provide the ground truth heart rate measured by an oximeter. We evaluate the performance of three deep learning-based methods to that of four traditional methods using two public datasets: the UBFC-rPPG dataset and the BH-rPPG dataset. The experimental results demonstrate that traditional methods are generally more resistant to fluctuating illuminations. We found that the rPPGNet achieves lowest MAE among deep learning-based method under medium illumination, whereas the CHROM achieves 1.5 beats per minute (BPM), outperforming the rPPGNet by 60%. These findings suggest that while developing deep learning-based heart rate estimation algorithms, illumination variation should be taken into account. This work serves as a benchmark for rPPG performance evaluation and it opens a pathway for future investigation into deep learning-based rPPG under illumination variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا