ﻻ يوجد ملخص باللغة العربية
We introduce the IBM Analog Hardware Acceleration Kit, a new and first of a kind open source toolkit to simulate analog crossbar arrays in a convenient fashion from within PyTorch (freely available at https://github.com/IBM/aihwkit). The toolkit is under active development and is centered around the concept of an analog tile which captures the computations performed on a crossbar array. Analog tiles are building blocks that can be used to extend existing network modules with analog components and compose arbitrary artificial neural networks (ANNs) using the flexibility of the PyTorch framework. Analog tiles can be conveniently configured to emulate a plethora of different analog hardware characteristics and their non-idealities, such as device-to-device and cycle-to-cycle variations, resistive device response curves, and weight and output noise. Additionally, the toolkit makes it possible to design custom unit cell configurations and to use advanced analog optimization algorithms such as Tiki-Taka. Moreover, the backward and update behavior can be set to ideal to enable hardware-aware training features for chips that target inference acceleration only. To evaluate the inference accuracy of such chips over time, we provide statistical programming noise and drift models calibrated on phase-change memory hardware. Our new toolkit is fully GPU accelerated and can be used to conveniently estimate the impact of material properties and non-idealities of future analog technology on the accuracy for arbitrary ANNs.
Tensor Decomposition Networks(TDNs) prevail for their inherent compact architectures. For providing convenience, we present a toolkit named TedNet that is based on the Pytorch framework, to give more researchers a flexible way to exploit TDNs. TedNet
In this work we propose an effective preconditioning technique to accelerate the steady-state simulation of large-scale memristor crossbar arrays (MCAs). We exploit the structural regularity of MCAs to develop a specially-crafted preconditioner that
Scientists and engineers employ stochastic numerical simulators to model empirically observed phenomena. In contrast to purely statistical models, simulators express scientific principles that provide powerful inductive biases, improve generalization
We develop a highly efficient numerical method to simulate small-amplitude flapping propulsion by a flexible wing in a nearly inviscid fluid. We allow the wings elastic modulus and mass density to vary arbitrarily, with an eye towards optimizing thes
Limbo is an open-source C++11 library for Bayesian optimization which is designed to be both highly flexible and very fast. It can be used to optimize functions for which the gradient is unknown, evaluations are expensive, and runtime cost matters (e