ﻻ يوجد ملخص باللغة العربية
Recommender systems attempts to identify and recommend the most preferable item (product-service) to an individual user. These systems predict user interest in items based on related items, users, and the interactions between items and users. We aim to build an auto-routine and color scheme recommender system that leverages a wealth of historical data and machine learning methods. We introduce an unsupervised method to recommend a routine for lighting. Moreover, by analyzing users daily logs, geographical location, temporal and usage information we understand user preference and predict their preferred color for lights. To do so, we cluster users based on their geographical information and usage distribution. We then build and train a predictive model within each cluster and aggregate the results. Results indicate that models based on similar users increases the prediction accuracy, with and without prior knowledge about user preferences.
A smart Ponzi scheme is a new form of economic crime that uses Ethereum smart contract account and cryptocurrency to implement Ponzi scheme. The smart Ponzi scheme has harmed the interests of many investors, but researches on smart Ponzi scheme detec
Classical recommender system methods typically face the filter bubble problem when users only receive recommendations of their familiar items, making them bored and dissatisfied. To address the filter bubble problem, unexpected recommendations have b
We propose to assess the fairness of personalized recommender systems in the sense of envy-freeness: every (group of) user(s) should prefer their recommendations to the recommendations of other (groups of) users. Auditing for envy-freeness requires p
Smart Manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying Industrial Internet of Things (IIoT) sensors in manufacturing pr
This paper advocates privacy preserving requirements on collection of user data for recommender systems. The purpose of our study is twofold. First, we ask if restrictions on data collection will hurt test quality of RNN-based recommendations. We stu