ﻻ يوجد ملخص باللغة العربية
Tunneling atomic force microscopy (TUNA) was used at ambient conditions to measure the current-voltage ($I$-$V$) characteristics at clean surfaces of highly oriented graphite samples with Bernal and rhombohedral stacking orders. The characteristic curves measured on Bernal-stacked graphite surfaces can be understood with an ordinary self-consistent semiconductor modeling and quantum mechanical tunneling current derivations. We show that the absence of a voltage region without measurable current in the $I$-$V$ spectra is not a proof of the lack of an energy band gap. It can be induced by a surface band bending due to a finite contact potential between tip and sample surface. Taking this into account in the model, we succeed to obtain a quantitative agreement between simulated and measured tunnel spectra for band gaps $(12 ldots 37)$,meV, in agreement to those extracted from the exponential temperature decrease of the longitudinal resistance measured in graphite samples with Bernal stacking order. In contrast, the surface of relatively thick graphite samples with rhombohedral stacking reveals the existence of a maximum in the first derivative $dI/dV$, a behavior compatible with the existence of a flat band. The characteristics of this maximum are comparable to those obtained at low temperatures with similar techniques.
There has been a lot of excitement around the observation of superconductivity in twisted bilayer graphene, associated to flat bands close to the Fermi level. Such correlated electronic states also occur in multilayer rhombohedral stacked graphene (R
The band alignment of semiconductor-metal interfaces plays a vital role in modern electronics, but remains difficult to predict theoretically and measure experimentally. For interfaces with strong band bending a main difficulty originates from the in
Using Scanning Tunneling Microscopy and Spectroscopy, we probe the electronic structures of single layer ${small MoS_2}$ on graphite. We show that the quasiparticle energy gap of single layer ${small MoS_2}$ is 2.15 $pm$ 0.07 eV at 77 K. Combining wi
The 2D Fermi surface of 1st stage PdAl2Cl8 acceptor-type graphite intercalation compounds (GICs) has been investigated using the Shubnikov-de Haas (SdH) effect. One fundamental frequency is observed, the angular variation of which confirms its strong
Multi-layer graphene with rhombohedral stacking is a promising carbon phase possibly displaying correlated states like magnetism or superconductivity due to the occurrence of a flat surface band at the Fermi level. Recently, flakes of thickness up to