ﻻ يوجد ملخص باللغة العربية
Acquisition of training data for the standard semantic segmentation is expensive if requiring that each pixel is labeled. Yet, current methods significantly deteriorate in weakly supervised settings, e.g. where a fraction of pixels is labeled or when only image-level tags are available. It has been shown that regularized losses - originally developed for unsupervised low-level segmentation and representing geometric priors on pixel labels - can considerably improve the quality of weakly supervised training. However, many common priors require optimization stronger than gradient descent. Thus, such regularizers have limited applicability in deep learning. We propose a new robust trust region approach for regularized losses improving the state-of-the-art results. Our approach can be seen as a higher-order generalization of the classic chain rule. It allows neural network optimization to use strong low-level solvers for the corresponding regularizers, including discrete ones.
Weakly supervised image segmentation trained with image-level labels usually suffers from inaccurate coverage of object areas during the generation of the pseudo groundtruth. This is because the object activation maps are trained with the classificat
Point clouds provide intrinsic geometric information and surface context for scene understanding. Existing methods for point cloud segmentation require a large amount of fully labeled data. Using advanced depth sensors, collection of large scale 3D d
Weakly-supervised learning based on, e.g., partially labelled images or image-tags, is currently attracting significant attention in CNN segmentation as it can mitigate the need for full and laborious pixel/voxel annotations. Enforcing high-order (gl
Weakly Supervised Semantic Segmentation (WSSS) based on image-level labels has been greatly advanced by exploiting the outputs of Class Activation Map (CAM) to generate the pseudo labels for semantic segmentation. However, CAM merely discovers seeds
Weakly-supervised semantic segmentation aims to assign each pixel a semantic category under weak supervisions, such as image-level tags. Most of existing weakly-supervised semantic segmentation methods do not use any feedback from segmentation output