ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Prototype Learning and Allocation for Few-Shot Segmentation

92   0   0.0 ( 0 )
 نشر من قبل Gen Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Prototype learning is extensively used for few-shot segmentation. Typically, a single prototype is obtained from the support feature by averaging the global object information. However, using one prototype to represent all the information may lead to ambiguities. In this paper, we propose two novel modules, named superpixel-guided clustering (SGC) and guided prototype allocation (GPA), for multiple prototype extraction and allocation. Specifically, SGC is a parameter-free and training-free approach, which extracts more representative prototypes by aggregating similar feature vectors, while GPA is able to select matched prototypes to provide more accurate guidance. By integrating the SGC and GPA together, we propose the Adaptive Superpixel-guided Network (ASGNet), which is a lightweight model and adapts to object scale and shape variation. In addition, our network can easily generalize to k-shot segmentation with substantial improvement and no additional computational cost. In particular, our evaluations on COCO demonstrate that ASGNet surpasses the state-of-the-art method by 5% in 5-shot segmentation.



قيم البحث

اقرأ أيضاً

141 - Jinlu Liu , Yongqiang Qin 2020
Few-shot segmentation targets to segment new classes with few annotated images provided. It is more challenging than traditional semantic segmentation tasks that segment known classes with abundant annotated images. In this paper, we propose a Protot ype Refinement Network (PRNet) to attack the challenge of few-shot segmentation. It firstly learns to bidirectionally extract prototypes from both support and query images of the known classes. Furthermore, to extract representative prototypes of the new classes, we use adaptation and fusion for prototype refinement. The step of adaptation makes the model to learn new concepts which is directly implemented by retraining. Prototype fusion is firstly proposed which fuses support prototypes with query prototypes, incorporating the knowledge from both sides. It is effective in prototype refinement without importing extra learnable parameters. In this way, the prototypes become more discriminative in low-data regimes. Experiments on PASAL-$5^i$ and COCO-$20^i$ demonstrate the superiority of our method. Especially on COCO-$20^i$, PRNet significantly outperforms existing methods by a large margin of 13.1% in 1-shot setting.
Few-shot learning requires to recognize novel classes with scarce labeled data. Prototypical network is useful in existing researches, however, training on narrow-size distribution of scarce data usually tends to get biased prototypes. In this paper, we figure out two key influencing factors of the process: the intra-class bias and the cross-class bias. We then propose a simple yet effective approach for prototype rectification in transductive setting. The approach utilizes label propagation to diminish the intra-class bias and feature shifting to diminish the cross-class bias. We also conduct theoretical analysis to derive its rationality as well as the lower bound of the performance. Effectiveness is shown on three few-shot benchmarks. Notably, our approach achieves state-of-the-art performance on both miniImageNet (70.31% on 1-shot and 81.89% on 5-shot) and tieredImageNet (78.74% on 1-shot and 86.92% on 5-shot).
Few-shot learning aims to recognize novel classes with few examples. Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then fine-tuning it through the nearest centroid based meta-learning. However, resu lts show that the fine-tuning step makes marginal improvements. In this paper, 1) we figure out the reason, i.e., in the pre-trained feature space, the base classes already form compact clusters while novel classes spread as groups with large variances, which implies that fine-tuning feature extractor is less meaningful; 2) instead of fine-tuning feature extractor, we focus on estimating more representative prototypes. Consequently, we propose a novel prototype completion based meta-learning framework. This framework first introduces primitive knowledge (i.e., class-level part or attribute annotations) and extracts representative features for seen attributes as priors. Second, a part/attribute transfer network is designed to learn to infer the representative features for unseen attributes as supplementary priors. Finally, a prototype completion network is devised to learn to complete prototypes with these priors. Moreover, to avoid the prototype completion error, we further develop a Gaussian based prototype fusion strategy that fuses the mean-based and completed prototypes by exploiting the unlabeled samples. Extensive experiments show that our method: (i) obtains more accurate prototypes; (ii) achieves superior performance on both inductive and transductive FSL settings.
This paper aims to address few-shot semantic segmentation. While existing prototype-based methods have achieved considerable success, they suffer from uncertainty and ambiguity caused by limited labelled examples. In this work, we propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot semantic segmentation. We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution. The probabilistic modeling of the prototype enhances the models generalization ability by handling the inherent uncertainty caused by limited data and intra-class variations of objects. To further enhance the model, we introduce a local latent variable to represent the attention map of each query image, which enables the model to attend to foreground objects while suppressing background. The optimization of the proposed model is formulated as a variational Bayesian inference problem, which is established by amortized inference networks.We conduct extensive experiments on three benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art methods. We also provide comprehensive analyses and ablation studies to gain insight into the effectiveness of our method for few-shot semantic segmentation.
95 - Boyu Yang , Chang Liu , Bohao Li 2020
Few-shot segmentation is challenging because objects within the support and query images could significantly differ in appearance and pose. Using a single prototype acquired directly from the support image to segment the query image causes semantic a mbiguity. In this paper, we propose prototype mixture models (PMMs), which correlate diverse image regions with multiple prototypes to enforce the prototype-based semantic representation. Estimated by an Expectation-Maximization algorithm, PMMs incorporate rich channel-wised and spatial semantics from limited support images. Utilized as representations as well as classifiers, PMMs fully leverage the semantics to activate objects in the query image while depressing background regions in a duplex manner. Extensive experiments on Pascal VOC and MS-COCO datasets show that PMMs significantly improve upon state-of-the-arts. Particularly, PMMs improve 5-shot segmentation performance on MS-COCO by up to 5.82% with only a moderate cost for model size and inference speed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا