ﻻ يوجد ملخص باللغة العربية
We present a study on the spatially scanned spectroscopic observations of the transit of GJ 1132 b, a warm ($sim$500 K) Super-Earth (1.13 R$_oplus$) that was obtained with the G141 grism (1.125 - 1.650 $mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope. We used the publicly available Iraclis pipeline to extract the planetary transmission spectra from the five visits and produce a precise transmission spectrum. We analysed the spectrum using the TauREx3 atmospheric retrieval code with which we show that the measurements do not contain molecular signatures in the investigated wavelength range and are best-fit with a flat-line model. Our results suggest that the planet does not have a clear primordial, hydrogen-dominated atmosphere. Instead, GJ 1132 b could have a cloudy hydrogen-dominated envelope, a very enriched secondary atmosphere, be airless, or have a tenuous atmosphere that has not been detected. Due to the narrow wavelength coverage of WFC3, these scenarios cannot be distinguished yet but the James Webb Space Telescope may be capable of detecting atmospheric features, although several observations may be required to provide useful constraints.
We present the analysis of the hot-Jupiter KELT-7b using transmission and emission spectroscopy from the Hubble Space Telescope (HST), both taken with the Wide Field Camera 3 (WFC3). Our study uncovers a rich transmission spectrum which is consistent
Orbiting a M dwarf 12 pc away, the transiting exoplanet GJ 1132b is a prime target for transmission spectroscopy. With a mass of 1.7 Earth masses and radius of 1.1 Earth radii, GJ 1132bs bulk density indicates that this planet is rocky. Yet with an e
GJ9827 is a bright star hosting a planetary system with three transiting planets. As a multi-planet system with planets that sprawl within the boundaries of the radius gap between terrestrial and gaseous planets, GJ9827 is an optimal target to study
We report here the analysis of the near-infrared transit spectrum of the hot-Jupiter HAT-P-32b which was recorded with the Wide Field Camera 3 (WFC3) on-board the Hubble Space Telescope (HST). HAT-P-32b is one of the most inflated exoplanets discover
We observed two eclipses of the Kepler-13A planetary system, on UT 2014 April 28 and UT 2014 October 13, in the near-infrared using Wide Field Camera 3 on the Hubble Space Telescope. By using the nearby binary stars Kepler-13BC as a reference, we wer