ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective field theory for shallow P-wave states

67   0   0.0 ( 0 )
 نشر من قبل Evgeny Epelbaum
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the formulation of a non-relativistic effective field theory for two-body P-wave scattering in the presence of shallow states and critically address various approaches to renormalization proposed in the literature. It is demonstrated that the consistent renormalization involving only a finite number of parameters in the well-established formalism with auxiliary dimer fields corresponds to the inclusion of an infinite number of counterterms in the formulation with contact interactions only. We also discuss the implications from the Wilsonian renormalization group analysis of P-wave scattering.



قيم البحث

اقرأ أيضاً

An approach for relating the nucleon excited states extracted from lattice QCD and the nucleon resonances of experimental data has been developed using the Hamiltonian effective field theory (HEFT) method. By formulating HEFT in the finite volume of the lattice, the eigenstates of the Hamiltonian model can be related to the energy eigenstates observed in Lattice simulations. By taking the infinite-volume limit of HEFT, information from the lattice is linked to experiment. The approach opens a new window for the study of experimentally-observed resonances from the first principles of lattice QCD calculations. With the Hamiltonian approach, one not only describes the spectra of lattice-QCD eigenstates through the eigenvalues of the finite-volume Hamiltonian matrix, but one also learns the composition of the lattice-QCD eigenstates via the eigenvectors of the Hamiltonian matrix. One learns the composition of the states in terms of the meson-baryon basis states considered in formulating the effective field theory. One also learns the composition of the resonances observed in Nature. In this paper, we will focus on recent breakthroughs in our understanding of the structure of the $N^*(1535)$, $N^*(1440)$ and $Lambda^*(1405)$ resonances using this method.
We briefly review general concepts of renormalization in quantum field theory and discuss their application to solutions of integral equations with singular potentials in the few-nucleon sector of the low-energy effective field theory of QCD. We also describe a particular subtractive renormalization scheme and consider a specific application to a toy-model with a singular potential serving as its effective field theoretical leading-order approximation.
We discuss the connection between the perturbative and non-perturbative renormalization and related conceptual issues in the few-nucleon sector of the low-energy effective field theory of the strong interactions. General arguments are supported by ex amples from effective theories with and without pions as dynamical degrees of freedom. A quantum mechanical potential with explicitly specified short- and long-range parts is considered as an underlying fundamental theory and the corresponding effective field theory potential is constructed. Further, the problem of the effective field theoretical renormalization of the Skornyakov-Ter-Martyrosian equation is revisited.
447 - Nico Klein , Dean Lee , Weitao Liu 2015
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations and predictions for the effective range expansion. In the pionless case, a simple Gaussian smearing allows to demonstrate lattice spacing independence over a wide range of lattice spacings. We show that regularization methods known from the continuum formulation are necessary as well as feasible for the pionful approach.
347 - N.Barnea , L.Contessi , D. Gazit 2013
We show how nuclear effective field theory (EFT) and ab initio nuclear-structure methods can turn input from lattice quantum chromodynamics (LQCD) into predictions for the properties of nuclei. We argue that pionless EFT is the appropriate theory to describe the light nuclei obtained in recent LQCD simulations carried out at pion masses much heavier than the physical pion mass. We solve the EFT using the effective-interaction hyperspherical harmonics and auxiliary-field diffusion Monte Carlo methods. Fitting the three leading-order EFT parameters to the deuteron, dineutron and triton LQCD energies at $m_{pi}approx 800$ MeV, we reproduce the corresponding alpha-particle binding and predict the binding energies of mass-5 and 6 ground states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا