ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of Giant Topological Magnetic Moment and Valley Splitting in Trilayer Graphene

87   0   0.0 ( 0 )
 نشر من قبل Jairo Velasco Jr.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bloch states of electrons in honeycomb two-dimensional crystals with multi-valley band structure and broken inversion symmetry have orbital magnetic moments of a topological nature. In crystals with two degenerate valleys, a perpendicular magnetic field lifts the valley degeneracy via a Zeeman effect due to these magnetic moments, leading to magnetoelectric effects which can be leveraged for creating valleytronic devices. In this work, we demonstrate that trilayer graphene with Bernal stacking, (ABA TLG) hosts topological magnetic moments with a large and widely tunable valley g-factor, reaching a value 500 at the extreme of the studied parametric range. The reported experiment consists in sublattice-resolved scanning tunneling spectroscopy under perpendicular electric and magnetic fields that control the TLG bands. The tunneling spectra agree very well with the results of theoretical modelling that includes the full details of the TLG tight-binding model and accounts for a quantum-dot-like potential profile formed electrostatically under the scanning tunneling microscope tip. Our results show that ABA TLG is a compelling quantum material platform.



قيم البحث

اقرأ أيضاً

110 - Di Xiao , Wang Yao , Qian Niu 2007
We investigate physical properties that can be used to distinguish the valley degree of freedom in systems where inversion symmetry is broken, using graphene systems as examples. We show that the pseudospin associated with the valley index of carrier s has an intrinsic magnetic moment, in close analogy with the Bohr magneton for the electron spin. There is also a valley dependent Berry phase effect that can result in a valley contrasting Hall transport, with carriers in different valleys turning into opposite directions transverse to an in-plane electric field. These effects can be used to generate and detect valley polarization by magnetic and electric means, forming the basis for the so-called valley-tronics applications.
Lifting the valley degeneracy of monolayer transition metal dichalcogenides (TMD) would allow versatile control of the valley degree of freedom. We report a giant valley exciton splitting of 18 meV/T for monolayer WS2, using the proximity effect from a ferromagnetic EuS substrate, which is enhanced by nearly two orders of magnitude from the 0.2 meV/T obtained by an external magnetic field. More interestingly, a sign reversal of the valley exciton splitting is observed as compared to that of WSe2 on EuS. Using first principles calculations, we investigate the complex behavior of exchange interactions between TMDs and EuS, that is qualitatively different from the Zeeman effect. The sign reversal is attributed to competing ferromagnetic (FM) and antiferromagnetic (AFM) exchange interactions for Eu- and S- terminated EuS surface sites. They act differently on the conduction and valence bands of WS2 compared to WSe2. Tuning the sign and magnitude of the valley exciton splitting offers opportunities for versatile control of valley pseudospin for quantum information processing.
Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken. In certain 2D electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field. In principle, this offers the remarkable possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control. Here we demonstrate this principle for the first time using bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible that allows direct optical probing of these Berry-phase related properties. We show that the optical circular dichroism, which reflects the orbital magnetic moment in the valleys, can be continuously tuned from -15% to 15% as a function of gate voltage in bilayer MoS2 field-effect transistors. In contrast, the dichroism is gate-independent in monolayer MoS2, which is structurally non-centrosymmetric. Our work demonstrates the ability to continuously vary orbital magnetic moments between positive and negative values via symmetry control. This represents a new approach to manipulating Berry-phase effects for applications in quantum electronics associated with 2D electronic materials.
Starting with twisted bilayer graphene, graphene-based moire materials have recently been established as a new platform for studying strong electron correlations. In this paper, we study twisted graphene monolayers on trilayer graphene and demonstrat e that this system can host flat bands when the twist angle is close to the magic-angle of 1.16$^circ$. When monolayer graphene is twisted on ABA trilayer graphene, the flat bands are not isolated, but are intersected by a Dirac cone with a large Fermi velocity. In contrast, graphene twisted on ABC trilayer graphene (denoted AtABC) exhibits a gap between flat and remote bands. Since ABC trilayer graphene and twisted bilayer graphene are known to host broken-symmetry phases, we further investigate the ostensibly similar magic angle AtABC system. We study the effect of electron-electron interactions in AtABC using both Hartree theory and an atomic Hubbard theory to calculate the magnetic phase diagram as a function of doping, twist angle, and perpendicular electric field. Our analysis reveals a rich variety of magnetic orderings, including ferromagnetism and ferrimagnetism, and demonstrates that a perpendicular electric field makes AtABC more susceptible to magnetic ordering.
Twisted graphene multilayers have demonstrated to yield a versatile playground to engineer controllable electronic states. Here, by combining first-principles calculations and low-energy models, we demonstrate that twisted graphene trilayers provide a tunable system where van Hove singularities can be controlled electrically. In particular, it is shown that besides the band flattening, bulk valley currents appear, which can be quenched by local chemical dopants. We finally show that in the presence of electronic interactions, a non-uniform superfluid density emerges, whose non-uniformity gives rise to spectroscopic signatures in dispersive higher energy bands. Our results put forward twisted trilayers as a tunable van der Waals heterostructure displaying electrically controllable flat bands and bulk valley currents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا