ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraint Programming to Discover One-Flip Local Optima of Quadratic Unconstrained Binary Optimization Problems

102   0   0.0 ( 0 )
 نشر من قبل Amit Verma Dr.
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The broad applicability of Quadratic Unconstrained Binary Optimization (QUBO) constitutes a general-purpose modeling framework for combinatorial optimization problems and are a required format for gate array and quantum annealing computers. QUBO annealers as well as other solution approaches benefit from starting with a diverse set of solutions with local optimality an additional benefit. This paper presents a new method for generating a set of one-flip local optima leveraging constraint programming. Further, as demonstrated in experimental testing, analysis of the solution set allows the generation of soft constraints to help guide the optimization process.



قيم البحث

اقرأ أيضاً

In this paper we focus on the unconstrained binary quadratic optimization model, maximize x^t Qx, x binary, and consider the problem of identifying optimal solutions that are robust with respect to perturbations in the Q matrix.. We are motivated to find robust, or stable, solutions because of the uncertainty inherent in the big data origins of Q and limitations in computer numerical precision, particularly in a new class of quantum annealing computers. Experimental design techniques are used to generate a diverse subset of possible scenarios, from which robust solutions are identified. An illustrative example with practical application to business decision making is examined. The approach presented also generates a surface response equation which is used to estimate upper bounds in constant time for Q instantiations within the scenario extremes. In addition, a theoretical framework for the robustness of individual x_i variables is considered by examining the range of Q values over which the x_i are predetermined.
65 - Amit Verma , Mark Lewis 2021
The Quadratic Unconstrained Binary Optimization (QUBO) modeling and solution framework is a requirement for quantum and digital annealers. However optimality for QUBO problems of any practical size is extremely difficult to achieve. In order to incor porate the problem-specific insights, a diverse set of solutions meeting an acceptable target metric or goal is the preference in high level decision making. In this paper, we present two alternatives for goal-seeking QUBO for minimizing the deviation from a given target as well as a range of values around a target. Experimental results illustrate the efficacy of the proposed approach over Constraint Programming for quickly finding a satisficing set of solutions.
62 - Amit Verma , Mark Lewis 2021
Quadratic Unconstrained Binary Optimization models are useful for solving a diverse range of optimization problems. Constraints can be added by incorporating quadratic penalty terms into the objective, often with the introduction of slack variables n eeded for conversion of inequalities. This transformation can lead to a significant increase in the size and density of the problem. Herein, we propose an efficient approach for recasting inequality constraints that reduces the number of linear and quadratic variables. Experimental results illustrate the efficacy.
The Fujitsu Digital Annealer (DA) is designed to solve fully connected quadratic unconstrained binary optimization (QUBO) problems. It is implemented on application-specific CMOS hardware and currently solves problems of up to 1024 variables. The DAs algorithm is currently based on simulated annealing; however, it differs from it in its utilization of an efficient parallel-trial scheme and a dynamic escape mechanism. In addition, the DA exploits the massive parallelization that custom application-specific CMOS hardware allows. We compare the performance of the DA to simulated annealing and parallel tempering with isoenergetic cluster moves on two-dimensional and fully connected spin-glass problems with bimodal and Gaussian couplings. These represent the respective limits of sparse versus dense problems, as well as high-degeneracy versus low-degeneracy problems. Our results show that the DA currently exhibits a time-to-solution speedup of roughly two orders of magnitude for fully connected spin-glass problems with bimodal or Gaussian couplings, over the single-core implementations of simulated annealing and parallel tempering Monte Carlo used in this study. The DA does not appear to exhibit a speedup for sparse two-dimensional spin-glass problems, which we explain on theoretical grounds. We also benchmarked an early implementation of the Parallel Tempering DA. Our results suggest an improved scaling over the other algorithms for fully connected problems of average difficulty with bimodal disorder. The next generation of the DA is expected to be able to solve fully connected problems up to 8192 variables in size. This would enable the study of fundamental physics problems and industrial applications that were previously inaccessible using standard computing hardware or special-purpose quantum annealing machines.
Distributed Constraint Optimization Problems (DCOPs) are a widely studied class of optimization problems in which interaction between a set of cooperative agents are modeled as a set of constraints. DCOPs are NP-hard and significant effort has been d evoted to developing methods for finding incomplete solutions. In this paper, we study an emerging class of such incomplete algorithms that are broadly termed as population-based algorithms. The main characteristic of these algorithms is that they maintain a population of candidate solutions of a given problem and use this population to cover a large area of the search space and to avoid local-optima. In recent years, this class of algorithms has gained significant attention due to their ability to produce high-quality incomplete solutions. With the primary goal of further improving the quality of solutions compared to the state-of-the-art incomplete DCOP algorithms, we present two new population-based algorithms in this paper. Our first approach, Anytime Evolutionary DCOP or AED, exploits evolutionary optimization meta-heuristics to solve DCOPs. We also present a novel anytime update mechanism that gives AED its anytime property. While in our second contribution, we show that population-based approaches can be combined with local search approaches. Specifically, we develop an algorithm called DPSA based on the Simulated Annealing meta-heuristic. We empirically evaluate these two algorithms to illustrate their respective effectiveness in different settings against the state-of-the-art incomplete DCOP algorithms including all existing population-based algorithms in a wide variety of benchmarks. Our evaluation shows AED and DPSA markedly outperform the state-of-the-art and produce up to 75% improved solutions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا