ﻻ يوجد ملخص باللغة العربية
We characterize parallel double quantum dot Josephson junctions based on closely-grown double nanowires bridged by in-situ deposited superconductors. The parallel double dot behavior occurs despite the closeness of the nanowires and the potential risk of nanowire clamping during growth. By tuning the charge filling and lead couplings, we map out the simplest parallel double quantum dot Yu-Shiba-Rusinov phase diagram. Our quasi-independent two-wire hybrids show promise for the realization of exotic topological phases.
We have studied the effects of optical-frequency light on proximitized InAs/Al Josephson junctions based on highly n-doped InAs nanowires at varying incident photon flux and at three different photon wavelengths. The experimentally obtained IV curves
We study superconducting quantum interference in InSb flake Josephson junctions. An even-odd effect in the amplitude and periodicity of the superconducting quantum interference pattern is found. Interestingly, the occurrence of this pattern coincides
We report on the fabrication and measurements of planar mesoscopic Josephson junctions formed by InAs nanowires coupled to superconducting Nb terminals. The use of Si-doped InAs-nanowires with different bulk carrier concentrations allowed to tune the
We study the emergent band topology of subgap Andreev bound states in the three-terminal Josephson junctions. We scrutinize the symmetry constraints of the scattering matrix in the normal region connecting superconducting leads that enable the topolo
Majorana zero modes are quasiparticle states localized at the boundaries of topological superconductors that are expected to be ideal building blocks for fault-tolerant quantum computing. Several observations of zero-bias conductance peaks measured i