ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the problem of controlling a partially observed Markov decision process (POMDP) in order to actively estimate its state trajectory over a fixed horizon with minimal uncertainty. We pose a novel active smoothing problem in which the objective is to directly minimise the smoother entropy, that is, the conditional entropy of the (joint) state trajectory distribution of concern in fixed-interval Bayesian smoothing. Our formulation contrasts with prior active approaches that minimise the sum of conditional entropies of the (marginal) state estimates provided by Bayesian filters. By establishing a novel form of the smoother entropy in terms of the POMDP belief (or information) state, we show that our active smoothing problem can be reformulated as a (fully observed) Markov decision process with a value function that is concave in the belief state. The concavity of the value function is of particular importance since it enables the approximate solution of our active smoothing problem using piecewise-linear function approximations in conjunction with standard POMDP solvers. We illustrate the approximate solution of our active smoothing problem in simulation and compare its performance to alternative approaches based on minimising marginal state estimate uncertainties.
In this work, we study the problem of actively classifying the attributes of dynamical systems characterized as a finite set of Markov decision process (MDP) models. We are interested in finding strategies that actively interact with the dynamical sy
We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of an agents t
For hybrid Markov decision processes, UPPAAL Stratego can compute strategies that are safe for a given safety property and (in the limit) optimal for a given cost function. Unfortunately, these strategies cannot be exported easily since they are comp
We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated $M$-state Markov fading channel, where the p
We consider remote state estimation of multiple discrete-time linear time-invariant (LTI) systems over multiple wireless time-varying communication channels. Each system state is measured by a sensor, and the measurements from sensors are sent to a r