ﻻ يوجد ملخص باللغة العربية
The existence of simple uncoupled no-regret learning dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-form games generalize normal-form games by modeling both sequential and simultaneous moves, as well as imperfect information. Because of the sequential nature and presence of private information in the game, correlation in extensive-form games possesses significantly different properties than its counterpart in normal-form games, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE) has been proposed as the natural extensive-form counterpart to the classical notion of correlated equilibrium in normal-form games. Compared to the latter, the constraints that define the set of EFCEs are significantly more complex, as the correlation device must keep into account the evolution of beliefs of each player as they make observations throughout the game. Due to that significant added complexity, the existence of uncoupled learning dynamics leading to an EFCE has remained a challenging open research question for a long time. In this article, we settle that question by giving the first uncoupled no-regret dynamics that converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. We show that each iterate can be computed in time polynomial in the size of the game tree, and that, when all players play repeatedly according to our learning dynamics, the empirical frequency of play is proven to be a O(T^-0.5)-approximate EFCE with high probability after T game repetitions, and an EFCE almost surely in the limit.
The existence of simple, uncoupled no-regret dynamics that converge to correlated equilibria in normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known for more than 20 years that when all player
While in two-player zero-sum games the Nash equilibrium is a well-established prescriptive notion of optimal play, its applicability as a prescriptive tool beyond that setting is limited. Consequently, the study of decentralized learning dynamics tha
Counterfactual Regret Minimization (CFR) is an efficient no-regret learning algorithm for decision problems modeled as extensive games. CFRs regret bounds depend on the requirement of perfect recall: players always remember information that was revea
Regret has been established as a foundational concept in online learning, and likewise has important applications in the analysis of learning dynamics in games. Regret quantifies the difference between a learners performance against a baseline in hin
This paper examines the convergence of no-regret learning in Cournot games with continuous actions. Cournot games are the essential model for many socio-economic systems, where players compete by strategically setting their output quantity. We assume