ﻻ يوجد ملخص باللغة العربية
We propose two different discrete formulations for the weak imposition of the Neumann boundary conditions of the Darcy flow. The Raviart-Thomas mixed finite element on both triangular and quadrilateral meshes is considered for both methods. One is a consistent discretization depending on a weighting parameter scaling as $mathcal O(h^{-1})$, while the other is a penalty-type formulation obtained as the discretization of a perturbation of the original problem and relies on a parameter scaling as $mathcal O(h^{-k-1})$, $k$ being the order of the Raviart-Thomas space. We rigorously prove that both methods are stable and result in optimal convergent numerical schemes with respect to appropriate mesh-dependent norms, although the chosen norms do not scale as the usual $L^2$-norm. However, we are still able to recover the optimal a priori $L^2$-error estimates for the velocity field, respectively, for high-order and the lowest-order Raviart-Thomas discretizations, for the first and second numerical schemes. Finally, some numerical examples validating the theory are exhibited.
Fourth-order differential equations play an important role in many applications in science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with a focus on the effective treatment of
In this article, global stabilization results for the two dimensional (2D) viscous Burgers equation, that is, convergence of unsteady solution to its constant steady state solution with any initial data, are established using a nonlinear Neumann boun
This paper studies a model of two-phase flow with an immersed material viscous interface and a finite element method for numerical solution of the resulting system of PDEs. The interaction between the bulk and surface media is characterized by no-pen
We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection--diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank-Ni
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur