ﻻ يوجد ملخص باللغة العربية
Common modal decomposition techniques for flowfield analysis, data-driven modeling and flow control, such as proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are usually performed in an Eulerian (fixed) frame of reference with snapshots from measurements or evolution equations. The Eulerian description poses some difficulties, however, when the domain or the mesh deforms with time as, for example, in fluid-structure interactions. For such cases, we first formulate a Lagrangian modal analysis (LMA) ansatz by a posteriori transforming the Eulerian flow fields into Lagrangian flow maps through an orientation and measure-preserving domain diffeomorphism. The development is then verified for Lagrangian variants of POD and DMD using direct numerical simulations (DNS) of two canonical flow configurations at Mach 0.5, the lid-driven cavity and flow past a cylinder, representing internal and external flows, respectively, at pre- and post-bifurcation Reynolds numbers. The LMA is demonstrated for several situations encompassing unsteady flow without and with boundary and mesh deformation as well as non-uniform base flows that are steady in Eulerian but not in Lagrangian frames. We show that LMA application to steady nonuniform base flow yields insights into flow stability and post-bifurcation dynamics. LMA naturally leads to Lagrangian coherent flow structures and connections with finite-time Lyapunov exponents (FTLE). We examine the mathematical link between FTLE and LMA by considering a double-gyre flow pattern. Dynamically important flow features in the Lagrangian sense are recovered by performing LMA with forward and backward (adjoint) time procedures.
The hydrodynamics of a liquid-vapour interface in contact with an heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determi
We apply supervised machine learning techniques to a number of regression problems in fluid dynamics. Four machine learning architectures are examined in terms of their characteristics, accuracy, computational cost, and robustness for canonical flow
Modal stability analysis provides information about the long-time growth or decay of small-amplitude perturbations around a steady-state solution of a dynamical system. In fluid flows, exponentially growing perturbations can initiate departure from l
The characterization of intermittency in turbulence has its roots in the K62 theory, and if no proper definition is to be found in the literature, statistical properties of intermittency were studied and models were developed in attempt to reproduce
In recent years, there have been a surge in applications of neural networks (NNs) in physical sciences. Although various algorithmic advances have been proposed, there are, thus far, limited number of studies that assess the interpretability of neura