ترغب بنشر مسار تعليمي؟ اضغط هنا

Sensing force and charge at the nanoscale with a single-molecule tether

183   0   0.0 ( 0 )
 نشر من قبل Sanli Faez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring the electrophoretic mobility of molecules is a powerful experimental approach for investigating biomolecular processes. A frequent challenge in the context of single-particle measurements is throughput, limiting the obtainable statistics. Here, we present a molecular force sensor and charge detector based on parallelised imaging and tracking of tethered double-stranded DNA functionalised with charged nanoparticles interacting with an externally applied electric field. Tracking the position of the tethered particle with simultaneous nanometre precision and microsecond temporal resolution allows us to detect and quantify electrophoretic forces down to the sub-piconewton scale. Furthermore, we demonstrate that this approach is capable of detecting changes to the particle charge state, as induced by the addition of charged biomolecules or changes to pH. Our approach provides an alternative route to studying structural and charge dynamics at the single-molecule level.



قيم البحث

اقرأ أيضاً

One of the most intriguing results of single molecule experiments on proteins and nucleic acids is the discovery of functional heterogeneity: the observation that complex cellular machines exhibit multiple, biologically active conformations. The stru ctural differences between these conformations may be subtle, but each distinct state can be remarkably long-lived, with random inter
Many nanophotonic applications require precise control and characterization of electromagnetic field properties at the nanoscale. The chiral properties of the field are among its key characteristics, yet measurement of optical chirality at dimensions beyond the diffraction limit has proven difficult. Here we theoretically show that the chiral properties of light can be characterized down to the nanometer scale by means of force detection. We demonstrate that the photo-induced force exerted on a sharp chiral tip, subjected to sequential illumination by two circularly polarized beams of opposite handedness, provides a useful probe of the chirality of the electromagnetic field. The gradient force difference $Deltalangle$textit{$F_{grad, z}$}$rangle$ is found to have exclusive correspondence to the time-averaged helicity density, whereas the differential scattering force provides information about the spin angular momentum density of light. We further characterize and quantify the helicity-dependent $Deltalangle$textit{$F_{grad, z}$}$rangle$ using a Mie scattering formalism complemented with full wave simulations, underlining that the magnitude of the difference force is within an experimentally detectable range.
Fabricating nanocavities in which optically-active single quantum emitters are precisely positioned, is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single mo lecules laterally within sub-5nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore, and obtain enhancements of $geq4times10^3$ with high quantum yield ($geq50$%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of $pm1.5$ nm. Our approach introduces a straightforward non-invasive way to measure and quantify confined optical modes on the nanoscale.
We introduce a microscopy technique that facilitates the prediction of spatial features of chirality of nanoscale samples by exploiting photo-induced optical force exerted on an achiral tip in the vicinity of the test specimen. The tip-sample interac tive system is illuminated by structured light to probe both the transverse and longitudinal (with respect to the beam propagation direction) components of the sample magnetoelectric polarizability as the manifestation of its sense of handedness, i.e., chirality. We specifically prove that although circularly polarized waves are adequate to detect the transverse polarizability components of the sample, they are unable to probe the longitudinal component. To overcome this inadequacy, we propose a judiciously engineered combination of radially and azimuthally polarized beams, as optical vortices possessing pure longitudinal electric and magnetic field components along their vortex axis, respectively, hence probing longitudinal chirality. The proposed technique may benefit branches of science like stereochemistry, biomedicine, physical and material science, and pharmaceutics
We report on the injection locking of an optically levitated nanomechanical oscillator (a silica nanosphere) to resonant intensity modulations of an external optical signal. We explore the characteristic features of injection locking in this system, e.g. the phase pull-in effect and the injection-induced reduction of the oscillation linewidth. Our measurements are in good agreement with theoretical predictions and deepen the analogy of injection locking in levitated optomechanical systems to that in optical systems (lasers). By measuring the force noise of our feedback cooled free-running oscillator, we attain a force sensitivity of $sim23~rm{zN}/sqrt{rm{Hz}}$. This can readily allow, in fairly short integration times, for tests of violations of Newtonian gravity and searching for new small-scale forces. As a proof of concept, we show that the injection locking can be exploited to measure the forces optically induced on levitated nanoparticles, with potential applications in explorations of optical binding and entanglement between optically coupled nanomechanical oscillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا