Site-dependent selection of atoms for homogeneous atom-cavity coupling


الملخص بالإنكليزية

We demonstrate a method to obtain homogeneous atom-cavity coupling by selecting and keeping $^{87}$Rb atoms that are near maximally coupled to the cavitys standing-wave mode. We select atoms by imposing an AC Stark shift on the ground state hyperfine microwave transition frequency with light injected into the cavity. We then induce a spin flip with microwaves that are resonant for atoms that are near maximally coupled to the cavity mode of interest, after which, we use radiation pressure forces to remove from the cavity all the atoms in the initial spin state. Achieving greater homogeneity in the atom-cavity coupling will potentially enhance entanglement generation, intracavity driving of atomic transitions, cavity-optomechanics, and quantum simulations. This approach can easily be extended to other atomic species with microwave or optical transitions.

تحميل البحث