ﻻ يوجد ملخص باللغة العربية
The standard way of training video models entails sampling at each iteration a single clip from a video and optimizing the clip prediction with respect to the video-level label. We argue that a single clip may not have enough temporal coverage to exhibit the label to recognize, since video datasets are often weakly labeled with categorical information but without dense temporal annotations. Furthermore, optimizing the model over brief clips impedes its ability to learn long-term temporal dependencies. To overcome these limitations, we introduce a collaborative memory mechanism that encodes information across multiple sampled clips of a video at each training iteration. This enables the learning of long-range dependencies beyond a single clip. We explore different design choices for the collaborative memory to ease the optimization difficulties. Our proposed framework is end-to-end trainable and significantly improves the accuracy of video classification at a negligible computational overhead. Through extensive experiments, we demonstrate that our framework generalizes to different video architectures and tasks, outperforming the state of the art on both action recognition (e.g., Kinetics-400 & 700, Charades, Something-Something-V1) and action detection (e.g., AVA v2.1 & v2.2).
Recently, deep learning has shown its power in steganalysis. However, the proposed deep models have been often learned from pre-calculated noise residuals with fixed high-pass filters rather than from raw images. In this paper, we propose a new end-t
Dense video captioning aims to generate multiple associated captions with their temporal locations from the video. Previous methods follow a sophisticated localize-then-describe scheme, which heavily relies on numerous hand-crafted components. In thi
Many of the recent successful methods for video object segmentation (VOS) are overly complicated, heavily rely on fine-tuning on the first frame, and/or are slow, and are hence of limited practical use. In this work, we propose FEELVOS as a simple an
Recently, DETR and Deformable DETR have been proposed to eliminate the need for many hand-designed components in object detection while demonstrating good performance as previous complex hand-crafted detectors. However, their performance on Video Obj
We address the problem of text-guided video temporal grounding, which aims to identify the time interval of certain event based on a natural language description. Different from most existing methods that only consider RGB images as visual features,