ﻻ يوجد ملخص باللغة العربية
Using multipoint Magnetospheric Multiscale (MMS) observations in an unusual string-of-pearls configuration, we examine in detail observations of the reformation of a fast magnetosonic shock observed on the upstream edge of a foreshock transient structure upstream of Earths bow shock. The four MMS spacecraft were separated by several hundred km, comparable to suprathermal ion gyro-radius scales or several ion inertial lengths. At least half of the shock reformation cycle was observed, with a new shock ramp rising up out of the foot region of the original shock ramp. Using the multipoint observations, we convert the observed time-series data into distance along the shock normal in the shocks rest frame. That conversion allows for a unique study of the relative spatial scales of the shocks various features, including the shocks growth rate, and how they evolve during the reformation cycle. Analysis indicates that: the growth rate increases during reformation, electron-scale physics play an important role in the shock reformation, and energy conversion processes also undergo the same cyclical periodicity as reformation. Strong, thin electron-kinetic-scale current sheets and large-amplitude electrostatic and electromagnetic waves are reported. Results highlight the critical cross-scale coupling between electron-kinetic- and ion-kinetic-scale processes and details of the nature of nonstationarity, shock-front reformation at collisionless, fast magnetosonic shocks.
Studies of shocks have long suggested that a shock can undergo cyclically self-reformation in a time scale of ion cyclotron period. This process has been proposed as a primary mechanism for energy dissipation and energetic particle acceleration at sh
The nature of the magnetic structure arising from ion specular reflection in shock compression studies is examined by means of 1d particle in cell simulations. Propagation speed, field profiles and supporting currents for this magnetic structure are
Recent observations in the quasi-parallel bow shock by the MMS spacecraft show rapid heating and acceleration of ions up to an energy of about 100 keV. It is demonstrated that a prominent acceleration mechanism is the nonlinear interaction with a spe
FMS modes are studied in the model of the magnetotail as a cylinder with plasma sheet. The presence of the plasma sheet leads to a significant modification of the modes existing in the magnetotail in the form of a cylinder with no plasma sheet. Azimu
Geomagnetically-aligned density structures with a range of sizes exist in the near-Earth plasma environment, including 10-100 km-wide VLF/HF wave-ducting structures. Their small diameters and modest density enhancements make them difficult to observe