ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning to Filter: Siamese Relation Network for Robust Tracking

201   0   0.0 ( 0 )
 نشر من قبل Siyuan Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the great success of Siamese-based trackers, their performance under complicated scenarios is still not satisfying, especially when there are distractors. To this end, we propose a novel Siamese relation network, which introduces two efficient modules, i.e. Relation Detector (RD) and Refinement Module (RM). RD performs in a meta-learning way to obtain a learning ability to filter the distractors from the background while RM aims to effectively integrate the proposed RD into the Siamese framework to generate accurate tracking result. Moreover, to further improve the discriminability and robustness of the tracker, we introduce a contrastive training strategy that attempts not only to learn matching the same target but also to learn how to distinguish the different objects. Therefore, our tracker can achieve accurate tracking results when facing background clutters, fast motion, and occlusion. Experimental results on five popular benchmarks, including VOT2018, VOT2019, OTB100, LaSOT, and UAV123, show that the proposed method is effective and can achieve state-of-the-art results. The code will be available at https://github.com/hqucv/siamrn



قيم البحث

اقرأ أيضاً

Most of the existing trackers usually rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. Unfortunately, they typically call for tedious and heuristic configurations . To address this issue, we propose a simple yet effective visual tracking framework (named Siamese Box Adaptive Network, SiamBAN) by exploiting the expressive power of the fully convolutional network (FCN). SiamBAN views the visual tracking problem as a parallel classification and regression problem, and thus directly classifies objects and regresses their bounding boxes in a unified FCN. The no-prior box design avoids hyper-parameters associated with the candidate boxes, making SiamBAN more flexible and general. Extensive experiments on visual tracking benchmarks including VOT2018, VOT2019, OTB100, NFS, UAV123, and LaSOT demonstrate that SiamBAN achieves state-of-the-art performance and runs at 40 FPS, confirming its effectiveness and efficiency. The code will be available at https://github.com/hqucv/siamban.
Visual tracking plays an important role in perception system, which is a crucial part of intelligent transportation. Recently, Siamese network is a hot topic for visual tracking to estimate moving targets trajectory, due to its superior accuracy and simple framework. In general, Siamese tracking algorithms, supervised by logistic loss and triplet loss, increase the value of inner product between exemplar template and positive sample while reduce the value of inner product with background sample. However, the distractors from different exemplars are not considered by mentioned loss functions, which limit the feature models discrimination. In this paper, a new exemplar loss integrated with logistic loss is proposed to enhance the feature models discrimination by reducing inner products among exemplars. Without the bells and whistles, the proposed algorithm outperforms the methods supervised by logistic loss or triplet loss. Numerical results suggest that the newly developed algorithm achieves comparable performance in public benchmarks.
In the domain of visual tracking, most deep learning-based trackers highlight the accuracy but casting aside efficiency. Therefore, their real-world deployment on mobile platforms like the unmanned aerial vehicle (UAV) is impeded. In this work, a nov el two-stage Siamese network-based method is proposed for aerial tracking, textit{i.e.}, stage-1 for high-quality anchor proposal generation, stage-2 for refining the anchor proposal. Different from anchor-based methods with numerous pre-defined fixed-sized anchors, our no-prior method can 1) increase the robustness and generalization to different objects with various sizes, especially to small, occluded, and fast-moving objects, under complex scenarios in light of the adaptive anchor generation, 2) make calculation feasible due to the substantial decrease of anchor numbers. In addition, compared to anchor-free methods, our framework has better performance owing to refinement at stage-2. Comprehensive experiments on three benchmarks have proven the superior performance of our approach, with a speed of around 200 frames/s.
Single object tracking (SOT) is currently one of the most important tasks in computer vision. With the development of the deep network and the release for a series of large scale datasets for single object tracking, siamese networks have been propose d and perform better than most of the traditional methods. However, recent siamese networks get deeper and slower to obtain better performance. Most of these methods could only meet the needs of real-time object tracking in ideal environments. In order to achieve a better balance between efficiency and accuracy, we propose a simpler siamese network for single object tracking, which runs fast in poor hardware configurations while remaining an excellent accuracy. We use a more efficient regression method to compute the location of the tracked object in a shorter time without losing much precision. For improving the accuracy and speeding up the training progress, we introduce the Squeeze-and-excitation (SE) network into the feature extractor. In this paper, we compare the proposed method with some state-of-the-art trackers and analysis their performances. Using our method, a siamese network could be trained with shorter time and less data. The fast processing speed enables combining object tracking with object detection or other tasks in real time.
We propose a new Group Feature Selection method for Discriminative Correlation Filters (GFS-DCF) based visual object tracking. The key innovation of the proposed method is to perform group feature selection across both channel and spatial dimensions, thus to pinpoint the structural relevance of multi-channel features to the filtering system. In contrast to the widely used spatial regularisation or feature selection methods, to the best of our knowledge, this is the first time that channel selection has been advocated for DCF-based tracking. We demonstrate that our GFS-DCF method is able to significantly improve the performance of a DCF tracker equipped with deep neural network features. In addition, our GFS-DCF enables joint feature selection and filter learning, achieving enhanced discrimination and interpretability of the learned filters. To further improve the performance, we adaptively integrate historical information by constraining filters to be smooth across temporal frames, using an efficient low-rank approximation. By design, specific temporal-spatial-channel configurations are dynamically learned in the tracking process, highlighting the relevant features, and alleviating the performance degrading impact of less discriminative representations and reducing information redundancy. The experimental results obtained on OTB2013, OTB2015, VOT2017, VOT2018 and TrackingNet demonstrate the merits of our GFS-DCF and its superiority over the state-of-the-art trackers. The code is publicly available at https://github.com/XU-TIANYANG/GFS-DCF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا