ﻻ يوجد ملخص باللغة العربية
In this paper we study phase transitions for weakly interacting multiagent systems. By investigating the linear response of a system composed of a finite number of agents, we are able to probe the emergence in the thermodynamic limit of a singular behaviour of the susceptibility. We find clear evidence of the loss of analyticity due to a pole crossing the real axis of frequencies. Such behaviour has a degree of universality, as it does not depend on either the applied forcing nor on the considered observable. We present results relevant for both equilibrium and nonequilibrium phase transitions by studying the Desai-Zwanzig and Bonilla-Casado-Morillo models.
We review the occurrence of the patterns of the onset of chaos in low-dimensional nonlinear dissipative systems in leading topics of condensed matter physics and complex systems of various disciplines. We consider the dynamics associated with the att
In this work we consider the phase transition from ordered to disordered states that occur in the Vicsek model of self-propelled particles. This model was proposed to describe the emergence of collective order in swarming systems. When noise is added
(abridged) In this paper, we present the issues we consider as essential as far as the statistical mechanics of finite systems is concerned. In particular, we emphasis our present understanding of phase transitions in the framework of information the
When a second-order phase transition is crossed at fine rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum mani
We study the response to perturbations in the thermodynamic limit of a network of coupled identical agents undergoing a stochastic evolution which, in general, describes non-equilibrium conditions. All systems are nudged towards the common centre of