ﻻ يوجد ملخص باللغة العربية
Harmonic lasing provides an opportunity to extend the photon energy range of existing and planned X-ray FEL user facilities. Contrary to nonlinear harmonic generation, harmonic lasing can generate a much more intense, stable, and narrow-band FEL beam. Another interesting application is Harmonic Lasing Self-Seeding (HLSS) that allows to improve the longitudinal coherence and spectral power of a Self-Amplified Spontaneous Emission (SASE) FEL. This concept was tested at FLASH in the range of 4.5 - 15 nm and at PAL XFEL at 1 nm. In this paper we present recent results from the European XFEL where we successfully demonstrated harmonic lasing at 5.9 Angstrom and 2.8 Angstrom. In the latter case we obtained both 3rd and 5th harmonic lasing and, for the first time, operated a harmonic lasing cascade (5th-3rd-1st harmonics of the undulator). These results pave the way for reaching very high photon energies, up to 100 keV.
In this paper we have investigated the possibility of the operation of different charges in the bunch train for the nominal design of the XFEL injector and for the case that it is extended by an additional laser system on the cathode. We have examine
X-ray Free Electron Lasers (XFELs) have been proven to generate short and powerful radiation pulses allowing for a wide class of novel experiments. If an XFEL facility supports the generation of two X-ray pulses with different wavelengths and control
Techniques like inelastic X-ray scattering (IXS) and nuclear resonance scattering (NRS) are currently limited by the photon flux available at X-ray sources. At $14.4$ keV, third generation synchrotron radiation sources produce a maximum of $10^{10}$
The output SASE characteristics of the baseline European XFEL, recently used in the TDRs of scientific instruments and X-ray optics, have been previously optimized assuming uniform undulators without considering the potential of undulator tapering in
The usage of x-ray free electron laser (XFEL) in femtosecond nanocrystallography involves sequential illumination of many small crystals of arbitrary orientation. Hence a wide radiation bandwidth will be useful in order to obtain and to index a large