ترغب بنشر مسار تعليمي؟ اضغط هنا

Nine Potential Pitfalls when Designing Human-AI Co-Creative Systems

138   0   0.0 ( 0 )
 نشر من قبل Daniel Buschek
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This position paper examines potential pitfalls on the way towards achieving human-AI co-creation with generative models in a way that is beneficial to the users interests. In particular, we collected a set of nine potential pitfalls, based on the literature and our own experiences as researchers working at the intersection of HCI and AI. We illustrate each pitfall with examples and suggest ideas for addressing it. Reflecting on all pitfalls, we discuss and conclude with implications for future research directions. With this collection, we hope to contribute to a critical and constructive discussion on the roles of humans and AI in co-creative interactions, with an eye on related assumptions and potential side-effects for creative practices and beyond.



قيم البحث

اقرأ أيضاً

Human and AI are increasingly interacting and collaborating to accomplish various complex tasks in the context of diverse application domains (e.g., healthcare, transportation, and creative design). Two dynamic, learning entities (AI and human) have distinct mental model, expertise, and ability; such fundamental difference/mismatch offers opportunities for bringing new perspectives to achieve better results. However, this mismatch can cause unexpected failure and result in serious consequences. While recent research has paid much attention to enhancing interpretability or explainability to allow machine to explain how it makes a decision for supporting humans, this research argues that there is urging the need for both human and AI should develop specific, corresponding ability to interact and collaborate with each other to form a human-AI team to accomplish superior results. This research introduces a conceptual framework called Co-Learning, in which people can learn with/from and grow with AI partners over time. We characterize three key concepts of co-learning: mutual understanding, mutual benefits, and mutual growth for facilitating human-AI collaboration on complex problem solving. We will present proof-of-concepts to investigate whether and how our approach can help human-AI team to understand and benefit each other, and ultimately improve productivity and creativity on creative problem domains. The insights will contribute to the design of Human-AI collaboration.
In the age of big data, companies and governments are increasingly using algorithms to inform hiring decisions, employee management, policing, credit scoring, insurance pricing, and many more aspects of our lives. AI systems can help us make evidence -driven, efficient decisions, but can also confront us with unjustified, discriminatory decisions wrongly assumed to be accurate because they are made automatically and quantitatively. It is becoming evident that these technological developments are consequential to peoples fundamental human rights. Despite increasing attention to these urgent challenges in recent years, technical solutions to these complex socio-ethical problems are often developed without empirical study of societal context and the critical input of societal stakeholders who are impacted by the technology. On the other hand, calls for more ethically- and socially-aware AI often fail to provide answers for how to proceed beyond stressing the importance of transparency, explainability, and fairness. Bridging these socio-technical gaps and the deep divide between abstract value language and design requirements is essential to facilitate nuanced, context-dependent design choices that will support moral and social values. In this paper, we bridge this divide through the framework of Design for Values, drawing on methodologies of Value Sensitive Design and Participatory Design to present a roadmap for proactively engaging societal stakeholders to translate fundamental human rights into context-dependent design requirements through a structured, inclusive, and transparent process.
The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One application domain is data science. New techniques in automating the creation of AI, known as AutoAI or AutoML, aim to automate the work practices of data s cientists. AutoAI systems are capable of autonomously ingesting and pre-processing data, engineering new features, and creating and scoring models based on a target objectives (e.g. accuracy or run-time efficiency). Though not yet widely adopted, we are interested in understanding how AutoAI will impact the practice of data science. We conducted interviews with 20 data scientists who work at a large, multinational technology company and practice data science in various business settings. Our goal is to understand their current work practices and how these practices might change with AutoAI. Reactions were mixed: while informants expressed concerns about the trend of automating their jobs, they also strongly felt it was inevitable. Despite these concerns, they remained optimistic about their future job security due to a view that the future of data science work will be a collaboration between humans and AI systems, in which both automation and human expertise are indispensable.
As AI continues to advance, human-AI teams are inevitable. However, progress in AI is routinely measured in isolation, without a human in the loop. It is crucial to benchmark progress in AI, not just in isolation, but also in terms of how it translat es to helping humans perform certain tasks, i.e., the performance of human-AI teams. In this work, we design a cooperative game - GuessWhich - to measure human-AI team performance in the specific context of the AI being a visual conversational agent. GuessWhich involves live interaction between the human and the AI. The AI, which we call ALICE, is provided an image which is unseen by the human. Following a brief description of the image, the human questions ALICE about this secret image to identify it from a fixed pool of images. We measure performance of the human-ALICE team by the number of guesses it takes the human to correctly identify the secret image after a fixed number of dialog rounds with ALICE. We compare performance of the human-ALICE teams for t
Thinking of technology as a design material is appealing. It encourages designers to explore the materials properties to understand its capabilities and limitations, a prerequisite to generative design thinking. However, as a material, AI resists thi s approach because its properties emerge as part of the design process itself. Therefore, designers and AI engineers must collaborate in new ways to create both the material and its application experience. We investigate the co-creation process through a design study with 10 pairs of designers and engineers. We find that design probes with user data are a useful tool in defining AI materials. Through data probes, designers construct designerly representations of the envisioned AI experience (AIX) to identify desirable AI characteristics. Data probes facilitate divergent thinking, material testing, and design validation. Based on our findings, we propose a process model for co-creating AIX and offer design considerations for incorporating data probes in design tools.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا