ترغب بنشر مسار تعليمي؟ اضغط هنا

UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

105   0   0.0 ( 0 )
 نشر من قبل Mingyang Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Vision-and-language pre-training has achieved impressive success in learning multimodal representations between vision and language. To generalize this success to non-English languages, we introduce UC2, the first machine translation-augmented framework for cross-lingual cross-modal representation learning. To tackle the scarcity problem of multilingual captions for image datasets, we first augment existing English-only datasets with other languages via machine translation (MT). Then we extend the standard Masked Language Modeling and Image-Text Matching training objectives to multilingual setting, where alignment between different languages is captured through shared visual context (i.e, using image as pivot). To facilitate the learning of a joint embedding space of images and all languages of interest, we further propose two novel pre-training tasks, namely Masked Region-to-Token Modeling (MRTM) and Visual Translation Language Modeling (VTLM), leveraging MT-enhanced translated data. Evaluation on multilingual image-text retrieval and multilingual visual question answering benchmarks demonstrates that our proposed framework achieves new state-of-the-art on diverse non-English benchmarks while maintaining comparable performance to monolingual pre-trained models on English tasks.



قيم البحث

اقرأ أيضاً

Translating e-commercial product descriptions, a.k.a product-oriented machine translation (PMT), is essential to serve e-shoppers all over the world. However, due to the domain specialty, the PMT task is more challenging than traditional machine tran slation problems. Firstly, there are many specialized jargons in the product description, which are ambiguous to translate without the product image. Secondly, product descriptions are related to the image in more complicated ways than standard image descriptions, involving various visual aspects such as objects, shapes, colors or even subjective styles. Moreover, existing PMT datasets are small in scale to support the research. In this paper, we first construct a large-scale bilingual product description dataset called Fashion-MMT, which contains over 114k noisy and 40k manually cleaned description translations with multiple product images. To effectively learn semantic alignments among product images and bilingual texts in translation, we design a unified product-oriented cross-modal cross-lingual model (upoc~) for pre-training and fine-tuning. Experiments on the Fashion-MMT and Multi30k datasets show that our model significantly outperforms the state-of-the-art models even pre-trained on the same dataset. It is also shown to benefit more from large-scale noisy data to improve the translation quality. We will release the dataset and codes at https://github.com/syuqings/Fashion-MMT.
This paper studies zero-shot cross-lingual transfer of vision-language models. Specifically, we focus on multilingual text-to-video search and propose a Transformer-based model that learns contextualized multilingual multimodal embeddings. Under a ze ro-shot setting, we empirically demonstrate that performance degrades significantly when we query the multilingual text-video model with non-English sentences. To address this problem, we introduce a multilingual multimodal pre-training strategy, and collect a new multilingual instructional video dataset (MultiHowTo100M) for pre-training. Experiments on VTT show that our method significantly improves video search in non-English languages without additional annotations. Furthermore, when multilingual annotations are available, our method outperforms recent baselines by a large margin in multilingual text-to-video search on VTT and VATEX; as well as in multilingual text-to-image search on Multi30K. Our model and Multi-HowTo100M is available at http://github.com/berniebear/Multi-HT100M.
Commanding a robot to navigate with natural language instructions is a long-term goal for grounded language understanding and robotics. But the dominant language is English, according to previous studies on vision-language navigation (VLN). To go bey ond English and serve people speaking different languages, we collect a bilingual Room-to-Room (BL-R2R) dataset, extending the original benchmark with new Chinese instructions. Based on this newly introduced dataset, we study how an agent can be trained on existing English instructions but navigate effectively with another language under a zero-shot learning scenario. Without any training data of the target language, our model shows competitive results even compared to a model with full access to the target language training data. Moreover, we investigate the transferring ability of our model when given a certain amount of target language training data.
In this paper, we introduce ELECTRA-style tasks to cross-lingual language model pre-training. Specifically, we present two pre-training tasks, namely multilingual replaced token detection, and translation replaced token detection. Besides, we pretrai n the model, named as XLM-E, on both multilingual and parallel corpora. Our model outperforms the baseline models on various cross-lingual understanding tasks with much less computation cost. Moreover, analysis shows that XLM-E tends to obtain better cross-lingual transferability.
Cross-lingual Summarization (CLS) aims at producing a summary in the target language for an article in the source language. Traditional solutions employ a two-step approach, i.e. translate then summarize or summarize then translate. Recently, end-to- end models have achieved better results, but these approaches are mostly limited by their dependence on large-scale labeled data. We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks such as translation and monolingual tasks like masked language models. Thus, our model can leverage the massive monolingual data to enhance its modeling of language. Moreover, the architecture has no task-specific components, which saves memory and increases optimization efficiency. We show in experiments that this pre-training scheme can effectively boost the performance of cross-lingual summarization. In Neural Cross-Lingual Summarization (NCLS) dataset, our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا