ﻻ يوجد ملخص باللغة العربية
Node.js is one of the most popular frameworks for building web applications. As software systems mature, the cost of running their entire regression test suite can become significant. Selective Regression Testing (SRT) is a technique that executes only a subset of tests the regression test suite can detect software failures more efficiently. Previous SRT studies mainly focused on standard desktop applications. Node.js applications are considered hard to perform test reduction because of Nodes asynchronous, event-driven programming model and because JavaScript is a dynamic programming language. In this paper, we present NodeSRT, a Selective Regression Testing framework for Node.js applications. By performing static and dynamic analysis, NodeSRT identifies the relationship between changed methods and tests, then reduces the regression test suite to only tests that are affected by the change to improve the execution time of the regression test suite. To evaluate our selection technique, we applied NodeSRT to two open-source projects: Uppy and Simorgh, then compared our approach with the retest-all strategy and current industry-standard SRT technique: Jest OnlyChange. The results demonstrate that NodeSRT correctly selects affected tests based on changes and is 250% faster, 450% more precise than the Jest OnlyChange.
ReTest is a novel testing tool for Java applications with a graphical user interface (GUI), combining monkey testing and difference testing. Since this combination sidesteps the oracle problem, it enables the generation of GUI-based regression tests.
The widespread recognition of the smart contracts has established their importance in the landscape of next generation blockchain technology. However, writing a correct smart contract is notoriously difficult. Moreover, once a state-changing transact
Scripting languages are becoming more and more important as a tool for software development, as they provide great flexibility for rapid prototyping and for configuring componentware applications. In this paper we present LuaJava, a scripting tool fo
We discuss nonparametric tests for parametric specifications of regression quantiles. The test is based on the comparison of parametric and nonparametric fits of these quantiles. The nonparametric fit is a Nadaraya-Watson quantile smoothing estimator
One of the main barriers preventing widespread use of formal methods is the elicitation of formal specifications. Formal specifications facilitate the testing and verification process for safety critical robotic systems. However, handling the intrica