ﻻ يوجد ملخص باللغة العربية
Input-output analysis of transitional channel flows has proven to be a valuable analytical tool for identifying important flow structures and energetic motions. The traditional approach abstracts the nonlinear terms as forcing that is unstructured, in the sense that this forcing is not directly tied to the underlying nonlinearity in the dynamics. This paper instead employs a structured singular value-based approach that preserves certain input-output properties of the nonlinear forcing function in an effort to recover the larger range of key flow features identified through nonlinear analysis, experiments, and direct numerical simulation (DNS) of transitional channel flows. Application of this method to transitional plane Couette and plane Poiseuille flows leads to not only the identification of the streamwise coherent structures predicted through traditional input-output approaches, but also the characterization of the oblique flow structures as those requiring the least energy to induce transition in agreement with DNS studies, and nonlinear optimal perturbation analysis. The proposed approach also captures the recently observed oblique turbulent bands that have been linked to transition in experiments and DNS with very large channel size. The ability to identify the larger amplification of the streamwise varying structures predicted from DNS and nonlinear analysis in both flow regimes suggests that the structured approach allows one to maintain the nonlinear effects associated with weakening of the lift-up mechanism, which is known to dominate the linear operator. Capturing this key nonlinear effect enables the prediction of the wider range of known transitional flow structures within the analytical input-output modeling paradigm.
A system of simplified equations is proposed to govern the feedback interactions of large-scale flows present in laminar-turbulent patterns of transitional wall-bounded flows, with small-scale Reynolds stresses generated by the self-sustainment proce
A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the importa
Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local (minimal flow
In this essay, we recall the specificities of the transition to turbulence in wall-bounded flows and present recent achievements in the understanding of this problem. The transition is abrupt with laminar-turbulent coexistence over a finite range of
On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wa