Fast and Accurate Emulation of the SDO/HMI Stokes Inversion with Uncertainty Quantification


الملخص بالإنكليزية

The Helioseismic and Magnetic Imager (HMI) onboard NASAs Solar Dynamics Observatory (SDO) produces estimates of the photospheric magnetic field which are a critical input to many space weather modelling and forecasting systems. The magnetogram products produced by HMI and its analysis pipeline are the result of a per-pixel optimization that estimates solar atmospheric parameters and minimizes disagreement between a synthesized and observed Stokes vector. In this paper, we introduce a deep learning-based approach that can emulate the existing HMI pipeline results two orders of magnitude faster than the current pipeline algorithms. Our system is a U-Net trained on input Stokes vectors and their accompanying optimization-based VFISV

تحميل البحث