ترغب بنشر مسار تعليمي؟ اضغط هنا

Scale-aware Automatic Augmentation for Object Detection

84   0   0.0 ( 0 )
 نشر من قبل Chen Yukang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose Scale-aware AutoAug to learn data augmentation policies for object detection. We define a new scale-aware search space, where both image- and box-level augmentations are designed for maintaining scale invariance. Upon this search space, we propose a new search metric, termed Pareto Scale Balance, to facilitate search with high efficiency. In experiments, Scale-aware AutoAug yields significant and consistent improvement on various object detectors (e.g., RetinaNet, Faster R-CNN, Mask R-CNN, and FCOS), even compared with strong multi-scale training baselines. Our searched augmentation policies are transferable to other datasets and box-level tasks beyond object detection (e.g., instance segmentation and keypoint estimation) to improve performance. The search cost is much less than previous automated augmentation approaches for object detection. It is notable that our searched policies have meaningful patterns, which intuitively provide valuable insight for human data augmentation design. Code and models will be available at https://github.com/Jia-Research-Lab/SA-AutoAug.



قيم البحث

اقرأ أيضاً

Scale variation is one of the key challenges in object detection. In this work, we first present a controlled experiment to investigate the effect of receptive fields for scale variation in object detection. Based on the findings from the exploration experiments, we propose a novel Trident Network (TridentNet) aiming to generate scale-specific feature maps with a uniform representational power. We construct a parallel multi-branch architecture in which each branch shares the same transformation parameters but with different receptive fields. Then, we adopt a scale-aware training scheme to specialize each branch by sampling object instances of proper scales for training. As a bonus, a fast approximation version of TridentNet could achieve significant improvements without any additional parameters and computational cost compared with the vanilla detector. On the COCO dataset, our TridentNet with ResNet-101 backbone achieves state-of-the-art single-model results of 48.4 mAP. Codes are available at https://git.io/fj5vR.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Ma sk-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7% relative improvement on the instance segmentation and 7.1% on the object detection of small objects, compared to the current state of the art method on MS COCO.
Data augmentation has always been an effective way to overcome overfitting issue when the dataset is small. There are already lots of augmentation operations such as horizontal flip, random crop or even Mixup. However, unlike image classification tas k, we cannot simply perform these operations for object detection task because of the lack of labeled bounding boxes information for corresponding generated images. To address this challenge, we propose a framework making use of Generative Adversarial Networks(GAN) to perform unsupervised data augmentation. To be specific, based on the recently supreme performance of YOLOv4, we propose a two-step pipeline that enables us to generate an image where the object lies in a certain position. In this way, we can accomplish the goal that generating an image with bounding box label.
Detecting transparent objects in natural scenes is challenging due to the low contrast in texture, brightness and colors. Recent deep-learning-based works reveal that it is effective to leverage boundaries for transparent object detection (TOD). Howe ver, these methods usually encounter boundary-related imbalance problem, leading to limited generation capability. Detailly, a kind of boundaries in the background, which share the same characteristics with boundaries of transparent objects but have much smaller amounts, usually hurt the performance. To conquer the boundary-related imbalance problem, we propose a novel content-dependent data augmentation method termed FakeMix. Considering collecting these trouble-maker boundaries in the background is hard without corresponding annotations, we elaborately generate them by appending the boundaries of transparent objects from other samples into the current image during training, which adjusts the data space and improves the generalization of the models. Further, we present AdaptiveASPP, an enhanced version of ASPP, that can capture multi-scale and cross-modality features dynamically. Extensive experiments demonstrate that our methods clearly outperform the state-of-the-art methods. We also show that our approach can also transfer well on related tasks, in which the model meets similar troubles, such as mirror detection, glass detection, and camouflaged object detection. Code will be made publicly available.
Confidence-aware learning is proven as an effective solution to prevent networks becoming overconfident. We present a confidence-aware camouflaged object detection framework using dynamic supervision to produce both accurate camouflage map and meanin gful confidence representing model awareness about the current prediction. A camouflaged object detection network is designed to produce our camouflage prediction. Then, we concatenate it with the input image and feed it to the confidence estimation network to produce an one channel confidence map.We generate dynamic supervision for the confidence estimation network, representing the agreement of camouflage prediction with the ground truth camouflage map. With the produced confidence map, we introduce confidence-aware learning with the confidence map as guidance to pay more attention to the hard/low-confidence pixels in the loss function. We claim that, once trained, our confidence estimation network can evaluate pixel-wise accuracy of the prediction without relying on the ground truth camouflage map. Extensive results on four camouflaged object detection testing datasets illustrate the superior performance of the proposed model in explaining the camouflage prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا