ﻻ يوجد ملخص باللغة العربية
Intelligent reflection surface (IRS) is emerging as a promising technique for future wireless communications. Considering its excellent capability in customizing the channel conditions via energy-focusing and energy-nulling, it is an ideal technique for enhancing wireless communication security and privacy, through the theories of physical layer security and covert communications, respectively. In this article, we first present some results on applying IRS to improve the average secrecy rate in wiretap channels, to enable perfect communication covertness, and to deliberately create extra randomness in wireless propagations for hiding active wireless transmissions. Then, we identify multiple challenges for future research to fully unlock the benefits offered by IRS in the context of physical layer security and covert communications. With the aid of extensive numerical studies, we demonstrate the necessity of designing the amplitudes of the IRS elements in wireless communications with the consideration of security and privacy, where the optimal values are not always $1$ as commonly adopted in the literature. Furthermore, we reveal the tradeoff between the achievable secrecy performance and the estimation accuracy of the IRSs channel state information (CSI) at both the legitimate and malicious users, which presents the fundamental resource allocation challenge in the context of IRS-aided physical layer security. Finally, a passive channel estimation methodology exploiting deep neural networks and scene images is discussed as a potential solution to enabling CSI availability without utilizing resource-hungry pilots. This methodology serves as a visible pathway to significantly improving the covert communication rate in IRS-aided wireless networks.
Intelligent reflecting surface (IRS) is a novel burgeoning concept, which possesses advantages in enhancing wireless communication and user localization, while maintaining low hardware cost and energy consumption. Herein, we establish an IRS-aided mm
Intelligent reflecting surface (IRS) is a promising technology for wireless communications, thanks to its potential capability to engineer the radio environment. However, in practice, such an envisaged benefit is attainable only when the passive IRS
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over
This work examines the performance gain achieved by deploying an intelligent reflecting surface (IRS) in covert communications. To this end, we formulate the joint design of the transmit power and the IRS reflection coefficients by taking into accoun
This paper studies the feasibility of deploying intelligent reflecting surfaces (IRSs) in massive MIMO (multiple-input multiple-output) systems to improve the performance of users in the service dead zone. To reduce the channel training overhead, we